Apr 132013
 

MetroDescrivere geometricamente un oggetto significa averne interpretato la forma e misurato le sue dimensioni e riprodurlo poi graficamente sul di un supporto quale il foglio o lo schermo di un computer. Misurare un oggetto, vuol dire descriverlo in modo che sia quantificabile e confrontabile. Il concetto di misura è antico, basti pensare che lo scambio si fondava sulle comparazioni tra ciò che veniva ceduto e ciò che veniva acquistato. Per cui, i concetti di misura e di misurazione si sono sviluppati di pari passo con l’evoluzione umana, diventando con il tempo sempre più raffinati e variegati.

Nel disegno tecnico (architettonico e ingegneristico), la misurazione è parte fondamentale. Ogni tratto, ogni segno della matita sul foglio, è simbolo di un linguaggio universale. Un insieme di norme che codificano questi segni grafici dando loro un significato preciso e univoco. Ad esempio, linee spesse mettono in evidenza elementi importanti ed in primo piano, mentre linee tratteggiate descrivono elementi non visibili o di secondaria importanza.

Ma avviamoci in questo percorso che ci porta alla scoperta dei sistemi di misurazione.

QUALCHE CENNO STORICO

SISTEMA METRICO DECIMALE

Sistema-Metrico-decimaleI Sistemi di misurazione, intesi come insieme di regole codificate, fanno per la prima volta la loro apparizione in Francia nel 1791 e la loro diffusione sarà capillare, prima nei paesi non anglosassoni e poi anche in quelli. L’Italia, come la maggior parte dei paesi mondiali, utilizza per misurare il Sistema Metrico Decimale basato su potenze di dieci, legato direttamente al sistema decimale dei numeri, legame che ne ha garantito il successo. Nei primi sistemi metrici, vi erano solo due unità di misurazione fondamentali, il metro per le lunghezze e il grammo per il peso. Tutte le altre unità di misurazione erano derivate da queste.

Pur esistendo differenti sistemi metrici di misurazione, usati in campo scientifico e nell’Unione Sovietica, oggi per far chiarezza ed uniformarli, è stato realizzato lo SI, acronimo che indica il Sistema Internazionale di unità di misura. Questo deriva dal sistema MKS (metro, kilogrammo, secondo) a cui sono state aggiunte altre 4 unità fondamentali quali il kelvin (temperatura), l’ampere (intensità di corrente elettrica), la candela (intensità luminosa) e la mole (quantità delle sostanze).

Per cui il Sistema Internazionale consta di due classi di unità ben definite:

  • UNITA’ DI BASE (lunghezza, massa, temperatura, tempo, corrente elettrica, intensità luminosa, quantità di sostanza);
  • UNITA’ DERIVATE (lavoro, energia, potenza).

SISTEMI NON METRICI

Sistema britannico

Sistema Imperiale Britannico

Come è facile constatare, nel mondo, esistono anche altri sistemi di misurazione, non accettati internazionalmente, ma altrettanto diffusi quali il Sistema Imperiale Britannico e il Sistema Americano entrambi derivati dalle antiche unità di misura inglesi. La loro diffusione è dovuta alla grande quantità di conquiste effettuate dall’inghilterra, da cui la loro estensione a tutti i paesi del Commonwealth e nei paesi dell’Impero britannico. Molto lentamente, anche questi paesi stanno procedento all’adozione del sistema metrico internazionale, già avvenuto in alcuni campi come tecnologia, medicina e scienza mentre ancora resistono quelle legate alla misurazione.

LA MISURAZIONE NEL DISEGNO TECNICO

L’importanza della misurazione ha il suo apice nel disegno tecnico, dove tutto è normato e dove tutto crea una relazione tra oggetti reali e la loro rappresentazione sulla carta. Nel disegno tecnico, sia esso architettonico, meccanico, urbanistico o cartografico, si dice che l’oggetto venga rappresentato in “scala”, intendendo per scala una relazione tra la misura reale dell’oggetto e la misura dello stesso nel disegno, utilizzando per entrambi la stessa unità di misura.

La prima operazione da effettuare, è la misurazione della dimensione dell’oggetto da rappresentare e le dimensioni del foglio sul quale sarà rappresentato. In parole povere, bisogna trovare il “miglior compromesso” tra la dimensione del supporto di rappresentazione (il foglio) e le dimensioni reali dell’oggetto. Immaginiamo di dover rappresentare su carta un’auto di grandi dimensioni come quella nell’immagine qui sotto:

Scala11

sarà necessario misurare il lato di maggior dimensione dell’oggetto (auto), ossia la sua lunghezza e la dimensione del lato maggiore del nostro supporto da disegno (foglio):

Scala1

Il foglio è evidentemente molto più piccolo. Dovremo, di conseguenza, ridurre l’oggetto per far si che esso sia rappresentabile con precisione entro i limiti del foglio.

Scala12

Immaginiamo che l’auto misuri 4440 mm (444 centimetri) e sapendo che il lato maggiore del foglio è pari a 330 mm (33 centimetri), proviamo per tentativi a farla entrare nel foglio. Nella tabella sotto sono riportati alcuni esempi di riduzione:

Misura Auto (mm) / = Dimensione foglio (330 mm) Scala
4.440 2 2.220 NO 1:2
4.440 4 1.110 NO 1:4
4.440 5 880 NO 1:5
4.440 10 440 NO 1:10
4.440 20 220 OK 1:20
4.440 15 296 OK 1:15

Nel primo caso abbiamo diviso per 2 la misura dell’auto, ma evidentemente non può entrare all’interno del foglio da disegno (colore rosso).

Nel secondo caso dividiamo per 4, ma anche così la misura dell’auto è maggiore della misura del foglio. Procedendo per tentativi aumentiamo il fattore di divisione. Dividendo per 20 l’auto rientrerebbe nel foglio (colore giallo). Ma in quest’ultimo caso, sarebbe rimasto molto spazio tra i suoi bordi e il disegno dell’auto; quindi, questa riduzione è eccessiva.

Nell’ultimo tentativo, dividendo per 15 la lunghezza dell’auto, abbiamo trovato il giusto compromesso tra oggetto e foglio (colore verde). Sotto una possibile rappresentazione grafica dell’auto in oggetto:

Scala2

SCALE DI MISURAZIONE

SCALA NUMERICA

Nell’ultima colonna della tabella precedente, è riportata la dicitura scala. Si tratta della cosiddetta scala numerica, ossia di un modo attraverso il quale indicare il grado di riduzione dell’oggetto. E’ espressa sotto forma di frazione che rappresenta il rapporto tra la misura sul foglio e quella sull’oggetto, ad esempio 1:100, 1:10.000, 1:50.000. Il disegno è tanto più piccolo, quanto maggiore è il denominatore della frazione. In pratica, in numeratore è sempre 1 (uno) e va sostituito con la dimensione reale dell’oggetto, espressa generalmente in centimetri, mentre al denominatore avremo il fattore di scala, ossia il valore per cui va divisa la dimensione reale.

Si scriverà ad esempio 1:5 (che si legge 1 a 5) e significa che divideremo la misura dell’oggetto per 5, ossia ridurremo di 5 volte la sua dimensione.

SCALA GRAFICA

E’ detto scala grafica quel segmento suddiviso in tante parti uguali che corrispondono alla lunghezza indicata.

scala-numerica-e-scala-graficaIn pratica, per sapere qual’è la distanza tra due punti su una cartina geografica, basterà misurare con una squadretta la loro distanza e verificare sulla scala grafica i nostri centimetri a quanti chilometri (ad esempio) corrispondano nella realtà.


ESEMPI

Per comprendere meglio quanto detto, proviamo a fare due esempi, uno da dimensione sulla carta (dc) a dimensione reale (dr) e uno da dimensione reale a dimensione sulla carta.

Esempio 1: diciamo che due località distano tra di loro 1.2 Km nella realtà e abbiamo una planimetria della zona su carta in scala 1:10.000. Qual’è la distanza su carta? Allora, procediamo con ordine:

  1. convertiamo i chilometri in centimetri, quindi 1,2Km corrisponderanno a 120.000 cm;
  2. la scala é 1:10.000, quindi sostituiamo a 1 il valore reale in centimetri: Avremo 120.000 cm : 10.000;
  3. il risultato è 12 cm, ossia sulla nostra cartina 1,2Km corrispondono a 12 cm in scala 1:10.000.

Esempio 2: diciamo adesso che abbiamo misurato la distanza tra due punti su una cartina in scala 1:50.000 e che questa distanza è pari a 17 cm. Qual’è la distanza reale? Procediamo:

  1. l’uguaglianza per ricavare la distanza reale è la seguente: 1 : scala = distanza sulla carta : distanza reale;
  2. abbiamo tutto tranne la distanza reale, sostituiamo i valori: 1 : 50.000 = 17 cm : X (che si legge 1 sta a 50.000 come 17 sta a X);
  3. da cui X = (17 cm * 50.000) / 1;
  4. ossia 850.000 cm pari a 8,5Km.
PUOI LEGGERE ANCHE:
Ott 092011
 
Squadretta 30-60°

Squadretta 30-60°

Squadretta 45°

Squadretta 45°

Hanno forma triangolare e vengono utilizzate normalmente in coppia. Abbiamo così:

▪   Una squadretta detta scalena, nella quale l’ipotenusa forma con i cateti angoli di 30° e 60°;

▪   Una squadretta isoscele, nella quale l’ipotenusa forma con i cateti due angoli uguali di 45°.

Il materiale utilizzato è normalmente plastica (acrilico proprio per le sue caratteristiche di trasparenza), ma se ne possono trovare anche in metallo o legno. Su uno dei cateti, chiamato ala, è sovrimpressa una striscia graduata per la misurazione dei tratti che si realizzano. Le squadrette, vengono utilizzate normalmente assieme alla riga per poter tracciare segmenti perpendicolari o incidenti oppure utilizzando gli angoli di uso comune.

UN PO DI STORIA

La prima comparsa delle squadrette per uso tecnico si può far risalire al periodo greco e romano. Si trattava di due bracci fissati tra loro usati in modo diffuso nelle officine e nei cantieri. Solo dal ‘600 acquisì una forma a triangolo pieno con tre asticelle unite come nelle attuali, inclinate con angoli da 30°, 45° e 60°. Dal 1930, l’uso della squadra, lasciò il posto ad uno strumento che entrò a far parte di tutti gli studi di progettazione e disegno tecnico: il TECNIGRAFO.

All’attuale acrilico, come materiale da costruzione, si arrivò attraverso l’uso di differenti materiali, tra cui per primi il legno, il metallo (ferro o bronzo), l’avorio e l’osso. Dall’800 si impiegò anche la celluloide e successivamente l’alluminio per la sua leggerezza e lavorabilità. Solo nel ‘900 si approdò all’attuale acrilico (sostanza sintetica e trasparente) come materiale da costruzione.

squadretta zoppa2

Squadretta zoppa

Esistono anche altre versioni di squadrette tecniche utilizzate in officina dette squadre zoppe. In queste, un lato è assente (normalmente l’ipotenusa) ed il cateto più corto è utilizzato a martello in modo da poter essere appoggiato ad un bordo come guida per tracciare linee parallele o perpendicolari.

USO DELLE SQUADRETTE

Di seguito illustro brevemente alcuni possibili usi delle squadrate per tracciare linee perpendicolari e parallele, ortogonali e inclinate.

 

 

Uso delle squadrette per realizzare linee parallele.

Articoli1

Set 242011
 

Il normografo è un particolare strumento tecnico, utilizzato dai disegnatori, soprattutto geometri e architetti, per la realizzazione di speciali caratteri tipografici e non.

In special modo, il normografo veniva utilizzato, insieme alle squadrette e al righello, per la realizzazione di caratteri uniformi. Si tratta di un righello di plastica o di altro materiale su cui sono intagliate le lettere dell’alfabeto o altri caratteri speciali ad esempio cerchi (cerchiografo), quadrati (quadrografo), ecc., che in epoca pre-computer aiutavano i disegnatori a realizzare simboli e caratteri con una certa precisione. Particolari pennini a inchiostro o sottilissime micromine, consentivano di seguire tali forme per ottenere sul foglio, in modo preciso, il segno corrispondente. L’uso più diffuso era quello relativo alla quotatura di un disegno, ma si usava anche per l’apprendimento della lingua o nel design industriale. Il computer ha oggi soppiantato definitivamente tale strumento rendendolo idoneo per un uso esclusivamente didattico.

Normografo da 0.5mm

I normografi possono presentare incisi sulla loro superficie tutti i caratteri dell’alfabeto o solo alcuni di essi, essendo altri realizzabili a partire da quelli rappresentati (es. la F maiuscola si può realizzare a partire dalla E non tracciando il trattino inferiore). Normalmente il normografo presenta profili tirachina, cioè bordi rialzati per facilitare lo scorrimento dell’inchiostro senza che lo strumento lo faccia sbavare. Infine, possiamo trovare in commercio, normografi di diversa dimensione per realizzare caratteri più o meno grandi.

OLYMPUS DIGITAL CAMERA

Set 142011
 

compass

Il compasso è uno strumento geometrico da disegno antichissimo. E’ lo strumento più adoperato assieme al righello e alle squadre, utile a realizzare circonferenze e archi.

Il compasso è formato da due aste, solitamente di uguale lunghezza, articolate nella parte alta tramite un semplice sistema a vite. Alla base delle due aste, qualche volta allungabili, sono fissati strumenti tecnici diversi in funzione di quello che bisogna realizzare. Le parti, comunque, sempre presenti sono:

  • sistema fissante (ago o ventosa);
  • sistema scrivente (mina di grafite, gessetto, pennino di china).

In alcuni compassi, specie in quelli professionali, esiste la possibilità di mutare l’attrezzo scrivente a seconda del materiale di supporto scelto. ]

TIPI DI COMPASSO

Nel tempo, i compassi si sono evoluti sempre più, adeguandosi alle richieste e alle necessità dei tecnici sia in campo progettuale che, navale, militare e aeronautico. A seconda delle caratteristiche avremo, quindi:

  • Compasso da disegno con ago fissante, aste regolabili o no, sistema scrivente con mina o pennino e strumenti aggiuntivi sostituibili;
  • Balaustroni, se hanno un ago come attrezzo fissante, una mina o un pennino come sistema scrivente ed una rotellina nel centro per la regolazione dell’apertura;
  • Balaustrini, quando presentano le stesse peculiarità dei balaustroni ma mancano di rotellina regolatrice (il compasso è mantenuto nell’angolazione prescelta unicamente grazie alla durezza degli ingranaggi di giunzione tra le aste, che vanno dunque regolarmente stretti);
  • Compassi da lavagna, se posseggono come attrezzo fissante una ventosa e come sistema scrivente un gessetto o un pennarello da lavagna; tipicamente, essi sono fatti di legno o leghe metalliche a base di alluminio (onde renderli più leggeri viste le grandi dimensioni).

__________________________________________

LINKS