Set 192019
 

Spesso veniamo informati dei media sulle condizioni non proprio ottimali delle nostre strade. Buche, manto stradale non idoneo alla carrabilità, cedimenti. Da anni si cerca una soluzione al problema utilizzando nuove miscele di asfalto capaci di resistere sempre di più all’usura, all’azione degli agenti atmosferici e a tutte quelle azioni meccaniche che tendono a modificarne la condizione iniziale.

Forse la soluzione a questo problema giunge proprio dall’Italia, dove Interchimica, un’azienda italiana leader mondiale nello sviluppo di soluzioni high-tech per l’asfalto e Directa Plus, produttore di prodotti a base di grafene, hanno stretto un accordo e realizzato per la prima volta una nuova miscela di asfalto basata sul materiale del futuro ( leggi, WONDER MATERIAL: GRAFENE), chiamato Gipave. 

Secondo quanto riportato dei calcoli della stessa Interchimica, la nuova super miscela stradale, permetterà di realizzare strade 3 volte più resistenti che con il tradizionale asfalto. Inoltre questo nuovo materiale resiste alla fatica il 250% in più e incrementa la resistenza al passaggio dei veicoli del 35% migliorando così anche la resistenza alla deformazione e riducendo in modo consistente le tracce lasciate dagli pneumatici.

L’esperimento è stato realizzato proprio lì dove le problematiche stradali sono state più volte evidenziate dai mass media, cioè a Roma sulla strada provinciale Ardeatina dove, una società indipendente ha effettuato l’analisi delle performance del manto stradale. I risultati sono stati in linea con quelli comunicati da Interchimica e questo aperto la strada alla sperimentazione in altre regioni italiane e in altri paesi quali Oman, Regno Unito e U.S.A.

L’amministratore delegato di Interchimica in un’intervista, ha affermato che gli esperimenti condotti sull’Ardeatina, sono stati effettuati semplicemente per validare sul campo i risultati già ottenuti in laboratorio. L’altro aspetto incredibile di questo nuovo materiale e che queste strade sono riciclabili al 100%, prodotte a bassa temperatura, durature, senza buche e rispettose dell’ambiente. Le strade infatti ottenute con questo nuovo materiale potranno essere smontate e ri-pavimentate all’infinito utilizzando sempre il materiale dello smontaggio riducendo così anche gli interventi di manutenzione.

Il punto di forza sicuramente di questo nuovo composto sta nella sua capacità di reggere meglio alle escursioni climatiche soprattutto al grande caldo e al grande freddo. Le sperimentazioni, infatti, in Gran Bretagna e in Oman hanno appunto questo scopo, ossia testare il prodotto in quelle condizioni estreme opposte.

Gipave è frutto di uno studio durato ben tre anni e al termine del quale, nel novembre 2017, la società ha depositato il brevetto di questo super modificatore.

L’uso di Gipave, è pensato per strade a grande traffico, quali autostrade, aeroporti e porti e l’obiettivo primario è quello di creare un nuovo sistema capace di essere al passo con le richieste tecnologiche del momento ed essere altamente sostenibile.

GUARDA I VIDEO:

PUOI LEGGERE ANCHE:
Giu 122019
 

L’ennesima soluzione per realizzare batterie ecologiche, a basso costo e durature giunge dai ricercatori dell’Università americana di Purdue, nell’Indiana i quali hanno presentato i risultati di una loro ricerca piuttosto singolare.

Gli scienziati sono partiti da un materiale poco riciclabile ma altamente inquinante come il polistirolo, le palline bianche che servono per imballaggio e per l’isolamento. Solo per il 10% viene riciclato mentre il resto finisce nelle discariche con gravi problemi per lo smaltimento e soprattutto per l’ambiente, vista la quantità di sostanze chimiche contenute in questo materiale capace di provocare grave inquinamento all’ecosistema.

Con la loro ricerca, gli scienziati Vinodkumar Etacheri e i ricercatori guidati da Vilas Pol, sono riusciti a trasformare questo materiale da imballaggio in micro fogli e nano-particelle di carbonio e li hanno testati come anodi delle batterie all’ioni di litio ricaricabili. Il risultato è stato incredibile. Questi elettrodi sono risultati migliori di quelli attualmente in commercio realizzati in grafite.

Utilizzo di questo materiale porterebbe con sé due vantaggi: da un lato eliminare materiale inquinante riciclandolo al 100%, dell’altro realizzare batterie altamente efficienti. Gli studi sono talmente a buon punto che, molto probabilmente, queste batterie potrebbero arrivare già sul mercato tra meno di due anni.

GUARDA I VIDEO:

GUARDA I VIDEO:
Giu 052019
 

Il problema plastica oramai è universalmente noto. È un materiale non biodegradabile ottenuto da idrocarburi come il petrolio, che immesso nell’ambiente lo inquina in maniera permanente. Soprattutto i mari sono oggetto di un grave inquinamento perché la plastica in mare si decompone molto lentamente inquinandone la superficie e i fondali, ma una volta che si disgrega in frammenti piccolissimi viene ingerita dai pesci dei quali, poi, noi ci nutriamo assumendone indirettamente durante l’alimentazione.

Molte sono le ricerche in corso per trovare una soluzione alla plastica e anche le nazioni si stanno muovendo in questa direzione; è di pochi giorni fa, la decisione della Comunità Europea di eliminare entro il 2021 la plastica monouso causa maggiore di inquinamento dei mari e del pianeta in generale.

Una soluzione interessante sembra giungere dai ricercatori del Dipartimento dell’energia degli Stati Uniti d’America, lo United States Department of Energy, dal Lawrence Berkeley National Laboratory dove è stato creato un nuovo materiale plastico totalmente riciclabile denominato poly-diketoenamine o PDK.

La caratteristica incredibile di questo nuovo materiale, è quella di poter essere smontato a livello molecolare per poi essere ricomposto per formare oggetti diversi con nuove tessiture, colori, forme, infinite volte senza perdita di prestazioni e qualità. 

Normalmente le molecole dei materiali plastici nascono da cosiddetti monomeri, ossia molecole molto semplici capaci in determinate condizioni fisiche, calore e pressione o altro, di legarsi insieme con altri monomeri a formare molecole anche molto complesse chiamate polimeri. Queste sostanze, però, una volta utilizzate non possono più essere riutilizzate per cui finiscono necessariamente in discarica con ulteriore inquinamento.

I monomeri di PDK, possono invece essere completamente separati dai loro additivi immergendolo oggetto in una soluzione particolarmente acida. Quindi, in questo nuovo materiale i legami immutabili delle plastiche convenzionali, vengono tramutati in legami reversibili che fanno sì che il materiale possa essere più e più volte riciclato in modo molto efficace e senza nuovo inquinamento.

Per cui, qualunque oggetto realizzato in PDK può essere scomposto e ricomposto in qualunque altro oggetto cambiando, di conseguenza, la forma, il colore, le proprietà e senza mai dover gettare l’oggetto nella discarica.

Adesso, partendo da questa nuova scoperta, i ricercatori stanno lavorando su varianti che consentano di realizzare una vasta gamma di prodotti derivati dal PDK con proprietà termiche, meccaniche, fisiche e chimiche differenti, così da poter utilizzare questo nuovo materiale, totalmente riciclabile, in ogni possibile campo di applicazione.

GUARDA I VIDEO:

PUOI LEGGERE ANCHE:
Feb 062019
 

A volte le idee migliori vengono per caso, a volte sono provocate da azioni o fatti reali, altre vengono dalla fantasia dei bambini. È questo il caso di Haaziq Kazi un bambino indiano di appena 12 anni che ha ideato una superbarca smart capace, nella sua visione, di ripulire il mare dalle tonnellate di plastica che vi finiscono per mano dell’uomo. Un progetto visionario, fantasioso ma capace di sensibilizzare tutti su un problema grave che riguarda l’intero pianeta.

Il bambino lavora a questo progetto già da quando aveva nove anni e la sua nave di nome Ervis è ormai definita in ogni elemento. Dotata di un sistema di dischi, pompe idrauliche e filtri perfettamente disegnati, capaci di risucchiare tutta la plastica dagli oceani ma non soltanto. E’ anche capace di separare i rifiuti raccolti e distinguerli per caratteristiche e pericolosità.

Ervis è lunga 40 metri, larga 12 e alta 25 e dovrebbe avere una stazza orientativa di 600 tonnellate e dovrebbe essere capace di muoversi anche sui fiumi. Un progetto geniale, originale tanto da esser diventato fonte di ispirazione per molti ed esser valsa la ribalta al giovane indiano, invitato a  convegni e conferenze sui problemi degli oceani e dell’inquinamento.

Haaziq punta sempre il dito sulla tempistica, ricordando come sia necessario intervenire al più presto per salvare il mare. Il giovane indiano sta cercando uno sponsor che possa trasformare il suo progetto in una barca reale e chissà, se nel suo percorso, il giovane inventore riuscirà a coronare il suo sogno di fanciullo.

GUARDA I VIDEO:

PUOI LEGGERE ANCHE:
Feb 042019
 

I nuovi materiali, soprattutto quelli compositi, stanno aprendo strade mai esplorate in tantissimi ambiti soprattutto quello spaziale. Arriva infatti, dalla NASA dei laboratori JPL l’ultimo ritrovato in fatto di nuovi materiali. Si tratta di una sorta di rete composta da tanti pezzettini di metallo lucido uniti tra di loro a formare un tessuto unico quasi come la vestizione protettiva dei cavalieri medievali.

Il materiale è stato realizzato a costi relativamente bassi grazie alla stampa 3D. Ogni singolo elemento può, infatti, essere stampato separatamente e assemblato nella configurazione definitiva. Il fatto di essere composto da tanti elementi separati ma uniti in una rete unica gli conferisce grande flessibilità e lo rende adatto ad essere utilizzato per elementi non rigidi ma capaci di adattarsi a scopi diversi, come antenne o vele solari per le navicelle spaziali del futuro. Altra caratteristica interessantissima di questo materiale è che, le due facce sono completamente diverse, una lucida in grado di riflettere il calore e la luce e quindi, utilizzabile come schermatura per proteggere dal surriscaldamento le navi spaziali, l’altra opaca capace di trattenere il calore, da poter essere utilizzata per isolare spazi interni in realtà particolarmente fredde.

Il fatto di essere prodotto con la stampa 3D rende questo materiale adattabile a qualunque tipo di configurazione e impiegabile in 1000 modi diversi anzi, secondo Polit Casillas, l’ingegnere a capo del progetto, questa caratteristica lo renderebbe adatto, in futuro, a stampa direttamente in viaggio nello spazio o riciclabile quando non più utile. Inoltre la versatilità di questo materiale composto da tantissimi pezzi, renderebbe le parti complessive realizzate, molto più sicure e meno costose perché meno soggette a guasti o rotture.

GUARDA I VIDEO:

PUOI LEGGERE ANCHE:
Gen 162019
 

Era il 2004 quando due ricercatori, Andre Geim e Konstantin Novoselov, scoprirono quasi per caso un materiale che può definirsi senza ombra di dubbio il “materiale delle meraviglie“: il grafene. L’incredibile scoperta di cui ancora non si son ben definiti i limiti, è valsa dopo soli 6 anni, il premio Nobel per la Fisica ai due ricercatori.

Andre Geim e Konstantin Novoselov

Dotato di proprietà straordinarie che, hanno consentito di rivedere molte delle caratteristiche fisiche e chimiche conosciute, elencare le proprietà del grafene è quasi impossibile.

Partiamo dal fatto che è il materiale più sottile al mondo. Ha una struttura piana fatta di un reticolo dello spessore di un solo atomo, quando si pensava che non potessero esistere materiali con struttura atomica di questo spessore. Pensate che per ottenere un solo millimetro di questo materiale, bisognerebbe sovrapporne ben 3 milioni di strati.

Grazie al suo incredibile spessore, gli elettroni si spostano su una superficie, anziché su un volume. In questo modo, nel loro percorso non dovendo passare all’interno del materiale, scorrono come in un fiume, non scontrandosi con altre particelle che, come negli altri materiali conduttori tradizionali, li rallenterebbero e per attrito trasformerebbero parte della loro elettricità in calore da dover poi dissipare. Questo lo rende un conduttore elettrico eccezionale, 250 volte migliore del silicio e contemporaneamente non svilupperebbe calore al passaggio della corrente.

Una delle prime applicazioni del grafene in campo energetico è stata una lampada LED molto più potente, efficiente e durevole di qualsiasi altro tipo di illuminazione.

Ha una incredibile elasticità che permette di allungarlo fino al 120% della sua lunghezza, ma nonostante ciò è più duro del diamante. Questo ha consentito agli scienziati di creare una sorta di spugna da utilizzare in campo edile, decine di volte più resistente dell’acciaio.

E’ trasparente e la distanza dei suoi atomi è talmente ridotta da risultare impenetrabile da qualunque sostanza, compresi i più piccoli atomi, ossia quelli dell’elio. Questa proprietà lo rende perfetto per realizzare filtri in grado di separare l’acqua da qualunque altra sostanza rendendola assolutamente pura, oppure filtrando totalmente il sale dell’acqua marina trasformandola in acqua dolce.

Filtro al grafene

Grazie al grafene sono state realizzate nuove lampade a LED molto più efficienti, durevoli e potenti di qualunque altro tipo di illuminazione ad un costo decisamente ridotto.

Lampade LED in grafene già in commercio

Ma gli obiettivi sono molto più ambiziosi; proprio in virtù della sua struttura molecolare impenetrabile, il grafene potrà essere utilizzato per scomporre le molecole d’acqua così da ottenere l’idrogeno puro, già definito il carburante del prossimo futuro.

Il grafene potrà essere utilizzato anche per la creazione di pannelli fotovoltaici di nuova generazione. Una pellicola di grafene, spruzzata su un pannello, sostituirebbe il platino utilizzato adesso, abbattendo i costi di ben 10 mila volte e soprattutto nei pannelli al grafene, ogni singolo fotone ecciterebbe ben 2 elettroni, creando un effetto a cascata capace di creare una conversione della luce in elettricità di gran lunga superiore. Senza dimenticare che il grafene è pressoché trasparente, per cui uno strato di questo materiale sui vetri delle finestre consentirebbe di produrre tanta elettricità lasciando passare la luce.

E questo è solo l’inizio. Per capire esattamente a cosa siamo di fronte servirà del tempo, ma è indicativa una frase pronunciata durante un’intervista ad uno dei due scopritori, Andre Geim, quando gli chiesero a cosa potesse servire il grafene. Egli rispose: “Non lo so. È come presentare un pezzo di plastica a un uomo di un secolo fa e chiedergli cosa ci si può fare. Un po’ di tutto, penso“.

La rivoluzione, insomma, è appena iniziata.

GUARDA I VIDEO:

PUOI LEGGERE ANCHE:
Dic 222018
 

Che gli pneumatici inquinano, si sa. Polveri sottili, sostanze sintetiche ottenute dagli idrocarburi, difficile smaltimento degli scarti. Moltissime sono le soluzioni ecologiche che si stanno sperimentando a questo problema, soluzioni di cui anche noi, sulle nostre pagine, abbiamo dato ampio risalto. L’ultima in ordine di tempo arriva dal Salone dell’auto di Ginevra ed è stata presentata dal noto produttore di pneumatici americano Goodyear.

E’ stato ribattezzato Oxygene, e il nome non è casuale. Il progetto mira a ripulire l’aria e l’ambiente in cui viviamo da smog e polveri sottili che minacciano la nostra salute. Come? Il trucco sta nel fianco dello pneumatico, dove cresce muschio vivo capace di assorbire l’umidità e l’acqua presenti nell’atmosfera e sulla superficie stradale. Questa, entrando in circolo nella spalla dello pneumatico attiva un processo di fotosintesi come quello che normalmente avviene in natura facendo si che venga prodotto ossigeno.

Per comprendere la portata di questo miracolo della scienza, in una città come Parigi, ad esempio, girano circa 2 milioni e mezzo di veicoli producendo una quantità enorme di CO2. Facendo riferimento a questo dato, Oxygene riuscirebbe ad assorbire annualmente, per nutrire il muschio, circa 4.000 tonnellate di CO2 e a rilasciare circa 3.000 tonnellate di ossigeno.

Ma i benefici di questa innovazione non terminano qui. Infatti la pulizia dell’aria da sola non risolverebbe i problemi dei nostri centri urbani. L’altro problema sarebbe il riciclo di tutti gli pneumatici altamente inquinanti. Con Oxygene anche questo sarebbe risolto. La sua produzione, infatti, nasce da un processo di stampa 3D che utilizza polverino di gomma proveniente da altri pneumatici riciclati, quindi a impatto zero e secondo le procedure dell’economia circolare.

Oxygene è poi uno pneumatico smart, dotato di sensori e tecnologie all’avanguardia. Durante la fotosintesi, accumula energia che serve ad alimentare l’elettronica integrata. Sensori disposti lungo la sua superficie forniscono energia al sistema di intelligenza artificiale e alla striscia di LED lungo il fianco capaci di cambiare colore in virtù delle manovre che si stanno compiendo, quasi come gli indicatori di direzione (frecce) avvisando gli utenti della strada delle manovre imminenti, come cambio di direzione, frenata, cambio di carreggiata.

Uno pneumatico per il futuro, capace di poter contribuire anch’esso al miglioramento delle condizioni di vita nei centri urbani e come detto dall’Amministratore Delegato di Goodyear “Oxygene intende sfidare il nostro modo di pensare lo pneumatico e contribuire ad alimentare il dibattito sulla mobilità del futuro intelligente, sicura e sostenibile”.

GUARDA I VIDEO:
Dic 212018
 

Un semplice lavoro in classe, un abaco con cui scoprire le tipologie della carta, ed ecco che la scintilla è scattata. Edoardo, come i suoi compagni, ha svolto il proprio lavoro in digitale da presentare alla classe. Una ricerca ricca, approfondita, ma con un elemento in più; la scoperta e la trattazione di qualcosa di poco noto, una pregiata carta di origine giapponese. L’argomento mi ha subito sorpreso ed entusiasmato al punto di aver proposto all’alunno di approfondirlo. Come spesso capita i risultati sono superiori alle aspettative e lascio a voi il giudizio. Tutta farina del suo sacco, il sottoscritto ha solo curato l’aspetto grafico di questo articolo. Bravo Edoardo e buona lettura a tutti. Prof. Betto


Washi和紙 deriva dalle parole wa=giapponese shi=carta ed è una carta tradizionale fabbricata a mano utilizzando le fibre interne di alcune piante. Dal novembre 2014, l’arte giapponese della lavorazione della carta è stata inserita dall’UNESCO tra i Patrimoni orali e immateriali dell’umanità.

La carta artigianale washi, nasce dalla lavorazione del cosiddetto “gelso della carta” (kozo) ed è un materiale di estrema raffinatezza, utilizzato per oltre mille e trecento anni come supporto per gli scritti buddhisti, per l’ikebana (l’arte della disposizione dei fiori recisi), per gli origami (arte giapponese di piegare la carta), per lo shodo (arte giapponese della calligrafia), per l’ukiyo-e (stampa artistica giapponese su carta impressa con matrici di legno), per decorare lanterne, paralumi, kimono, paraventi.

Pur essendo nota come “carta di riso”, la washi non si produce con il riso bensì con le fibre di alcune piante tipiche giapponesi: il Kozo, la Mitsumata e la Gampi. Secondo la cultura giapponese, la prima pianta rappresenta l’elemento maschile con fibre robuste, la seconda quello femminile delicato e morbido e la terza quello nobile, ricco e longevo.

KOZO MITSUMATA GAMPI

Per produrla, si possono usare anche fibre di bamboo, canapa, riso e frumento, ma queste conferiscono caratteristiche differenti al prodotto finale.

LE ORIGINI

La leggenda racconta che, sia stato un monaco buddhista coreano a introdurre la washi in Giappone, attorno al 610. Rimase però a lungo destinata solamente alle classi più agiate. Nel corso dei secoli, la lavorazione della carta divenne la specializzazione di molte località del Giappone ed oggi ne esistono migliaia di varietà di grande raffinatezza.

La carta giapponese è stata usata fin dall’antichità all’interno delle abitazioni per la sua capacità di far filtrare la luce, attenuandone l’intensità e donando così allo spazio un’illuminazione soffusa. Per questo motivo viene ancora oggi impiegata per realizzare le famose Chouchin, le lanterne usate per rituali, per cerimonie, per decorazioni (come insegne nei negozi o appese fuori davanti un’abitazione con il nome della famiglia).

Nel periodo della dinastia Heian (794-1185), gli artigiani raggiunsero uno straordinario grado di maestria nella fabbricazione della carta e produssero varietà di washi di altissima qualità. Le tecniche di fabbricazione si raffinarono sempre di più e la pasta della carta fu arricchita con petali, erbe, foglie, polveri d’oro e d’argento, fu aggiunto dell’incenso che preservava la carta dall’attacco degli insetti.

Presso la corte imperiale le carte pregiate venivano utilizzate nello scambio di poesie waka (brevi componimenti poetici). Nelle successive epoche Kamakura (1185-1333) e Muromachi (1333-1568), la produzione di washi si intensificò, restando comunque caratteristica delle comunità contadine, che vi si dedicavano nei lunghi mesi invernali. Servono, infatti, acqua fredda e pura e basse temperature per ammorbidire la corteccia di kōzo, di mitsumata e dei più rari vegetali grezzi come il gampi.

Esistono molti tipi di washima i più comuni sono tre:

  • Ganpishi (雁皮紙), maggiormente utilizzato per la creazione di oggetti di artigianato o per libri, ha una superficie liscia e lucida.
  • Kozogami (楮紙), la più diffusa, simile alla tela.
  • Mitsumatagami (三椏紙), anticamente utilizzata per la stampa della carta moneta.

LA DECORAZIONE

La decorazione delle carte washi avviene attraverso diverse tecniche:

  • con stampe intagliate a mano in legno (xilografia). La xilografia giapponese è una tecnica di incisione artistica unica al mondo. E’ una tecnica non tossica perché per la creazione delle immagini vengono usati legni naturali, colori ad acqua e carta fatta a mano.
  • con stencil che vengono ripetutamente spostati per ripetere il motivo (katazome).
  • con serigrafia attraverso teli di seta (chiyogamiusando colla di amido di riso per bloccare colori mentre si applica il disegno (yuzen).

Questi metodi di colorazione e disegno della carta sono simili a quelli usati per i tessili.

LA LAVORAZIONE

La lavorazione artigianale di questa raffinata carta è praticata oggi in tre comunità del Giappone: nel quartiere di Misumi della città di Hamada, Prefettura di Shimane; nella città di Mino, Prefettura di Gifu; nel villaggio di Higashi-Chichibu e nella città di Ogawa, Prefettura di Saitama. Si tratta di carta lavorata a mano, di buona consistenza, resistente e anche traslucida.

I giapponesi scoprirono che, le fibre del Kozo una pianta della famiglia del gelso, era particolarmente adatta per creare una carta sottile ma allo stesso tempo resistente. Fu introdotto anche l’uso di un nuovo collante mucillaginoso estratto dal bulbo dalla pianta del Tororo Aoi, capace di distribuire la fibra del Kozo in maniera omogenea nell’acqua, evitandone l’addensamento e dando vita ad una carta levigata e robusta.

Le innovazioni della tecnica di produzione riguardano la tecnica del nakashizuki: facendo uso di un telaio di setaccio era possibile stratificare più volte le fibre, in modo da aumentare la resistenza della carta. Il processo di lavorazione prevede un rituale antico, che si tramanda da generazioni.

La carta viene ottenuta immergendo le fibre del gelso da carta in acqua di fiume e vengono poi addensate e filtrate attraverso uno schermo di bambù.

Nella manifattura della washi le fibre delle piante impiegate sono pestate e tirate, piuttosto che macinate come nella produzione della carta “moderna”; questo procedimento contribuisce alla maggiore resistenza e flessibilità del prodotto finale. Le parti raccolte contenenti le fibre sono battute in acqua di fiume e raccolte in fasci di rafia. Dopo una notte a bagno, la rafia è sottoposta a bollitura e candeggiata naturalmente in acqua sotto il sole o con l’utilizzo di un agente chimico. Le impurità rimanenti sono trattate manualmente. La fibra viene sottoposta ad una ulteriore battitura e poi posta in vasche, dove, con una sorta di pettine viene stesa la mucillagine.

La mucillagine è l’elemento tradizionale per creare i fogli washi con il metodo antico e fa sì che le fibre siano mantenute sospese nella soluzione senza annodarsi tra loro. Quando il foglio bagnato raggiunge lo spessore voluto, lo schermo del tino viene liberato dalla struttura ed i nuovi fogli bagnati rimangono impilati uno sull’altro. Grazie alla mucillagine, i fogli possono essere separati facilmente, poiché nel corso della lavorazione si sono formati sottili film viscosi che li dividono. I fogli singoli vengono, infine, liberati dall’acqua con una pressa ad elica, appoggiati su materiali lisci, secchi e caldi per l’asciugatura.

La lavorazione del washi è un’artedelicata e complessa, ad essa si dedicano ormai solo pochi e anziani artigiani, alcuni dei quali sono nominati “tesori nazionali viventi”, il titolo concesso in Giappone a certi maestri di arti manuali, al fine di preservare le tecniche e le abilità artistiche in pericolo di esser perdute.

GUARDA I VIDEO:

PUOI LEGGERE ANCHE:
ANCHE NOI SCRITTORI
Alunno/i autore/i dell’articolo:
EDOARDO SCIRE’
Classe e Anno: Argomento di Riferimento:
Prima D – 2017/18 CARTA
Set 102018
 

Da anni si continua a parlare del grafene e delle sue incredibili proprietà, ma di applicazioni pratiche ancora poche e ristrette ad alcuni settori militari, sportivi e di bricolage. Il problema è legato alla enorme difficoltà per lavorarlo, agli ingenti costi di produzione e alla difficoltà di realizzarlo in grandi quantità.

Adesso iniziano a vedersi i primi prodotti in cui il sottilissimo strato di carbonio inizia a evidenziare tutte le sue potenzialità.

La Vollebak, una start-up britannica, ha lanciato sul mercato una linea di abbigliamento sportivo utilizzando per la prima volta il grafene. Il risultato di questo utilizzo è un giubbotto reversibile, risultato dell’unione con il nylon ad alta resistenza. Il grafene è assolutamente impermeabile, ma al tempo stesso traspirante. Questo perché la distanza tra le sue molecole è talmente ridotta da impedire il passaggio di quelle dell’acqua. Il risultato è un tessuto che consente una perfetta termoregolazione corporea e una distribuzione del calore uniforme su tutta la superficie. Anzi a detta dei produttori, se il lato con lo strato di grafene viene posto al sole, questo accumula il calore rilasciandolo gradualmente dando la piacevole sensazione di tepore come quando si indossa un piumone ma con un tessuto molto meno spesso e infinitamente più leggero.

Gli scienziati della Vollebak sul loro sito chiamano tutti a partecipare alla sperimentazione con questo nuovo prodotto per essere partecipi dell’evoluzione che, probabilmente, si chiamerà “era del carbonio”. Il nylon non può condurre il calore, ma unito con uno strato sottilissimo di grafene da un solo lato, si. Nasce così una nuova combinazione che rende possibili cose che sugli indumenti erano solo immaginabili. Leggerissimo, assolutamente impermeabile, traspirante, accumulatore di calore su di un lato, con i colori naturali dei due materiali, tasche con tagli laser senza cuciture assolutamente impermeabili. Data l’alta conduttività del grafene, si è deciso di aumentare la resistenza elettrica al tessuto per lasciarlo conduttivo ma non pericoloso per le persone che lo indossano. Allo stato originale, se si fosse collegato un lato della giacca con una sorgente elettrica, collegando una lampadina dall’altro lato questa si sarebbe accesa. La giacca è inoltre in grado di disperde grandi quantità di umidità, facendo sudare di meno o termo-regolando il corpo in maniera più rapida e efficace di ogni altro tessuto, ma purtroppo ancora non è chiaro il meccanismo con cui questo fenomeno avviene.

Ma i benefici del grafene non sono finiti qui: è batteriostatico, ossia i batteri non possono crescere o riprodursi sulla sua superficie, è anallergico e antistatico e inoltre atossico. Quindi, essendo un tessuto sportivo, non sarà fonte di sudore e cattivi odori.

Il costo è elevato, circa 700 euro, ma la difficoltà sull’uso del grafene in questo momento è proprio il processo produttivo estremamente costoso.

PUOI LEGGERE ANCHE:
Feb 222018
 
PIOMBO
DATI CONFIGURAZIONE
GALENA ASPETTO

Il Piombo, elemento metallico denso, con colore grigio-bluastro, ha simbolo Pb e numero atomico 82. Probabilmente, uno dei più antichi metalli conosciuti, il piombo veniva utilizzato dai romani per costruire tubi per la distribuzione di acqua.

Il Piombo è abbondantemente diffuso in tutto il mondo sotto forma di solfuro, nel minerale chiamato galena e in minerali di secondaria importanza come la cerussite e l’anglesite. Viene estratto mediante un processo di arrostimento e riduzione, che consiste nella conversione del piombo a ossido e nella successiva riduzione con carbone coke in fornace.

Miniera di piombo di Campo Pisano

Materiali di scarto presenti nel piombo, recuperati da vari processi industriali e quindi fusi, costituiscono un altro importante processo nella lavorazione di questo metallo. Molto spesso la galena contiene minerali preziosi come argento e oro che vengono recuperati attraverso il processo Parker, che utilizza una piccola quantità di zinco, mescolata al piombo fuso, per sciogliere i metalli preziosi.

PROPRIETA’

Il piombo metallico è tenero, malleabile, duttile è poco resistente alla trazione ed è un cattivo conduttore di elettricità. Se esposto all’aria, varia rapidamente aspetto e assume una colorazione blu-grigiastra piuttosto opaca, molto diversa dalla consueta lucentezza metallica. Fonde a 328 °C, bolle a 1740 °C, ha densità relativa 11,4 e peso atomico 207,20.

LEGHE

Miscelando il piombo con altri metalli, è possibile realizzare numerose leghe. Le più importanti sono:

  • Piombo-Arsenico
  • Piombo-Bario
  • Piombo-Bismuto
  • Piombo-Cadmio
  • Piombo-Calcio
  • Piombo-Rame
  • Piombo-Indio
  • Piombo-Litio
  • Piombo-Argento
  • Piombo-Magnesio
  • Piombo-Stagno
  • Piombo-Tellurio
IMPIEGHI

Il piombo è usato in enormi quantità nelle batterie e come rivestimento di cavi elettrici, tubi, serbatoi e negli apparecchi per i raggi X. Per la sua elevata densità il piombo trova impiego come sostanza schermante per i materiali radioattivi. Numerose leghe contenenti un’alta percentuale di piombo sono utilizzate nella saldatura, per i caratteri da stampa, per gli ingranaggi.

Batteria Proiettili Caratteri da stampa
PUOI LEGGERE ANCHE:
ANCHE NOI SCRITTORI
Alunno/i autore/i dell’articolo:
ALBERTO MUSSO
Classe e Anno: Argomento di Riferimento:
Prima I – 2017/18 METALLI
Feb 122018
 

Uno dei maggiori problemi dei nostri amati smartphone, è l’estrema delicatezza dei vetri touch con i quali interagiamo e soprattutto i costi non proprio economici per le loro sostituzioni. Oggi gli smartphone di fascia alta utilizzano quanto di meglio c’è sul mercato, e sto parlando di vetro Gorilla Glass (vedi: Un GORILLA nel VETRO parte 3) e di vetro Zaffiro (vedi: AVRO’ UN VETRO COME UNO ZAFFIRO), dotati di una durezza molto elevata. Ma nonostante i progressi fatti in tale direzione, nessun terminale è esente da rottura in caso di caduta. Perlomeno fino ad oggi. Infatti, un’azienda statunitense, la Akhan Semiconductor è riuscita nell’intento di creare un vetro probabilmente indistruttibile utilizzando diamanti veri, ossi i materiali che sulla scala di Mohs hanno la durezza maggiore.

Approfondimento: la scala di Mohs è un metodo empirico con cui si è sempre misurata la durezza dei materiali. Ideata dal mineralogista tedesco Friedrich Mohs nel 1812 questa scala assume 10 materiali di riferimento dal più tenero (talco) al più duro (diamante) numerati da 1 a 10 tali che ciascuno è in grado di scalfire quello che lo precede ed essere scalfito da quello che lo segue.

Questo prodotto incredibile prende il nome di Miraj Diamond Glass ed è ottenuto in laboratorio attraverso un particolare procedimento finalizzato alla riduzione dei costi. In pratica, si tratta di ricoprire con un sottile film, una pellicola di diamanti artificiali, una lastra di vetro aumentandone infinitamente la resistenza.

Secondo la Akhan Semiconductor, il Miraj Diamond è 6 volte più robusto, 10 volte più duro e fino a 800 volte più freddo rispetto al principale vetro della concorrenza, presumibilmente il Gorilla Glass della Corning.

Ovviamente il lavoro della Akhan Semiconductor non si ferma qui; secondo quanto affermato dal proprio CEO, Adam Khan, sono in corso numerosi test con diversi produttori di smartphone al fine di verificare se le capacità di resistenza del nuovo vetro si associano ad altre necessarie capacità. I vetri dei moderni smartphone, sono infatti touch, quindi consentono il passaggio dei segnali elettrici e soprattutto bisognerà verificare se questi abbiano una riflettanza opportuna. Infatti, un valore troppo elevato di questa renderebbe lo schermo in presenza di luce illeggibile costringendo il sistema ad aumentare continuamente la luminosità a tutto discapito della durata della batterie.

A parte questi dettagli, pare che la strada sia stata tracciata e forse già nel 2019 vedremo i primi telefonini con vetri di diamante artificiali e potremo essere meno preoccupati se accidentalmente il nostro cellulare dovesse cadere per terra.

PUOI LEGGERE ANCHE:
Dic 022017
 

Campione di Perovskite

Al fine di superare i limiti di memorizzazione dei nostri sistemi elettronici, il cervello umano ha rappresentato per gli scienziati il primo elemento a cui fare riferimento nei propri studi. La sua capacità di selezionare le informazioni e di scegliere quali eliminare e quali mantenere è da sempre un fattore che ha affascinato gli scienziati.

Il cervello per funzionare correttamente, ha necessità di liberare spazio in quanto ha grandi capacità di memorizzazione ma queste non infinite. Alcune informazioni non sono importanti e lui sa riconoscerle, inoltre, ha la capacità di liberarsi degli stimoli ricorrenti, ossia quegli stimoli che si ripetono più e più volte come la paura di cadere dai pattini o dalla bici eliminando questa sgradevole sensazione ad ogni successivo uso.

Ispirandosi a questa incredibile capacità del cervello umano, alcuni scienziati statunitensi che si occupano di nano-tecnologie, hanno cercato di creare un materiale non biologico in grado di adattarsi alle informazioni ricevute scartando o accettando quelle ritenute importanti.

Hanno così prodotto un lattice che, prende il nome di perovskite quantistica, dimostrando attraverso simulazioni computerizzate e ai raggi X, di come questo materiale possegga un comportamento simile al cervello umano e di come manifesti elettronicamente la stessa capacità di cancellare le informazioni.

Il suo comportamento è spiegabile osservandolo al microscopio. La perovskite, agisce come una spugna che respira. Ogni volta che viene aggiunto un protone, la sua struttura atomica si espande o si contrae per assecondare questo cambiamento. Ripetendo il processo diverse volte, il materiale diventa sempre più insensibile allo stimolo e le sue contrazioni o espansioni diventano sempre meno visibili fino a non avvenire per nulla. In pratica la sua risposta allo stimolo diventa sempre meno importante fino a che questo lattice non mostra più alcun interesse alla variazione del numero dei protoni, ossia diventa indifferente ai nuovi stimoli.

I possibili impieghi sono sicuramente nel campo dell’intelligenza artificiale, per creare nuovi sistemi in grado di imitare sempre più il comportamento del cervello umano e fornire alle nostre macchine maggiori capacità di pensiero e autonomia decisionale.

GUARDA I VIDEO:

PUOI LEGGERE ANCHE:
Feb 272017
 

PROTECTPAX_Scroll

A chi non è mai capitato di vedere volare per terra il proprio smartphone e vederlo andare in frantumi?. Una esperienza sicuramente non piacevole. Oggi sono diversi i sistemi di protezione che si possono utilizzare per rendere più sicuri i nostri dispositivi o per rendere minore la probabilità di un danno grave come quello appena descritto. Tra i sistemi adottati, pellicole, gusci o altre bizzarre soluzioni, quella sviluppata da un paio di ingegnosi inventori, Pascal Buchen e Anthony Fllipik, è sicuramente una di quelle di cui sentiremo ancora parlare.

ProtectPax02

La loro invenzione denominata ProtectPax altro non è che una miscela di nanoparticelle di titanio che si presentano allo stato liquido e se spalmate sul dispositivo, lo rendono impermeabile, indistruttibile, resistente ai graffi e persino alle cadute. Nei test le immagini mostrano un terminale sottoposto ad ogni tipo di tortura, come ad esempio le martellate o il calpestamento da parte di un’auto.

ProtectPax03

Questo per far capire la grande azione realizzata dal prodotto. In pratica questo liquido, versato sul terminale, può essere spalmato letteralmente con un dito su tutta la superficie e bisogna poi lasciarlo agire per circa 10 minuti, cioè il tempo necessario ad asciugarlo. Da quel momento in poi potremo fare di tutto al nostro telefonino, sicuri che sarà protetto come all’interno di una corazza.

In pratica, il ProtectPax, questo composto di nanoparticelle di titanio, non fa altro che depositarsi sulla superficie e andare a riempire le minuscole porosità presenti su di essa rendendo le superfici, compreso il vetro, fino a 6 volte più resistenti. Inoltre. è completamente trasparente, questo fa in modo che resti garantita la funzionalità del vetro e attive tutte le caratteristiche touch dello schermo.

I test, hanno dimostrato che questa pellicola porta il materiale ad una durezza pari a quella dello zaffiro che nella scala di Mohs (quella che misura la durezza dei materiali – vedi anche: LE PROPRIETA’ DEI MATERIALI) è di 9H dove il valore più alto è 10H per il diamante e dove la durezza tipica degli schermi dei telefonini è normalmente compresa tra 2H e 5H.

ProtectPax01

La durata di questa pellicola protettiva non è però eterna; per circa un anno il dispositivo sarà perfettamente protetto, poi bisognerà effettuare nuovamente il trattamento. Il prodotto può essere applicato su molte superfici e rinforzare molti oggetti, come ad esempio occhiali, dispositivi elettronici, obiettivi fotografici ed altro.

Il prodotto è già ordinabile sulla piattaforma di crowdfunding Indiegogo al costo di soli 69$ per due dispositivi.

GUARDA I VIDEO:

//www.youtube.com/watch?v=72J39JmDkfM

PUOI LEGGERE ANCHE:
SCARICA L’ARTICOLO:
Feb 112017
 

Carta_Scroll

La carta è un materiale riciclabile al 100% anche se questo processo richiede l’impiego di tanta energia e l’uso in alcuni casi di prodotti tossici o non propriamente compatibili con l’ambiente. Inoltre, la quantità che se ne produce, da sola è un grande carico per il nostro sistema di smaltimento. Molta della carta che utilizziamo ha, se ci facciamo caso, una vita utile molto breve; si pensi ai quotidiani o agli imballaggi di prodotti freschi che vengono utilizzate per tempi molto brevi a volte solo pochi giorni.

NANOCARTA01

E’ proprio su questa specifica tipologia di carta che il ricercatore Wenshou Wang della Shandong University cinese, insieme ai ricercatori della University of California e della Berkley University, stanno lavorando. In pratica, hanno realizzato un nuovo tipo di carta basata su nanotecnologie, in grado di essere scritta con la sola presenza della luce ed esattamente con i raggi Ultra Violetti.

Il team di ricercatori ha ricoperto un normale foglio di carta con un materiale nanotecnologico che è possibile stampare e cancellare senza l’utilizzo dei colori o degli inchiostri.

NANOCARTA02

Wenshou Wang

Si tratta di un materiale che cambia colore quando viene esposto a sorgenti luminose. In pratica questo foglio è rivestito con una pellicola composta da due nanoparticelle: il blu di Prussia, un inchiostro molto conosciuto dagli artisti, non tossico ed economico e il biossido di titanio (TiO2) un semiconduttore. L’inchiostro blu ha la caratteristica che diventa completamente trasparente se acquisisce elettroni, mentre il biossido è un materiale fotocatalitico in grado di accelerare le reazioni chimiche in presenza di raggi UV.

Approfondisco: la fotocatalisi è l’azione in virtù della quale alcuni materiali semiconduttori, per es. l’ossido di zinco e il biossido di titanio, sotto l’azione della luce possono dar luogo a reazioni di riduzione o di ossidazione di sostanze indesiderate presenti anche in piccole quantità.

Il foglio si presenterà di conseguenza di colore blu prima di essere utilizzato per la presenza del blu di Prussia. La stampa avviene attraverso l’esposizione del foglio ai raggi UV; in questo modo, lo strato di biossido di titanio verrà eccitato dalla luce emettendo elettroni che, catturati dallo strato di colore ne realizzeranno la depigmentazione. In pratica, il foglio diventerà completamente trasparente tranne nelle parti non toccate dai raggi UV. In questo modo il testo o le immagini stampate resteranno in evidenza, in questo caso di colore blu.

Questa trasformazione, resta attiva per un periodo di circa 5 giorni, dopo i quali, lentamente ritornerà alla condizione iniziale, ossia completamente blu. Tale processo può essere accelerato, sottoponendo il foglio all’azione di un calore a 120°C per circa 10 minuti.

NANOCARTA03

Usando pigmenti diversi dal blu di Prussia, è possibile stampare in altri colori. Ora i ricercatori stanno lavorando per la realizzazione di una stampante in grado di stampare e cancellare immagini su fogli trattati con queste nanoparticelle.

E’ possibile già immaginare l’impatto sull’ambiente e sui costi di una carta del genere che non deve essere riciclata, ma solo ristampata infinite volte senza mai essere gettata; non saranno necessari colori di alcun genere e smaltimento di toner e cartucce esauste. Giornali, volantini pubblicitari e tutto ciò che necessita solo una stampa temporanea potranno essere realizzate con questo nuovo prodotto e risparmiare all’ambiente processi lunghi e comunque inquinanti per il recupero della carta da macero.

GUARDA I VIDEO:
PUOI LEGGERE ANCHE:
SCARICA L’ARTICOLO:
Feb 062017
 
ARGOMENTO INDICATO PER BES/DSA
Mappa2_icon

Acciaio01

L’acciaio è sicuramente la più importante delle leghe ottenute dall’uomo per le sue proprietà e per la quantità di impieghi. Si ottiene miscelando il metallo con maggiore presenza sulla Terra, il ferro, con il carbonio (carbon coke).

Ferro01Approfondisco: iferro è più usato di tutti i metalli, circa il 95% di tutto il metallo prodotto universalmente. E’ il metallo più abbondante sulla terra ed è considerato il decimo nell’universo. La maggior parte del ferro si trova sotto forma di ossidi contenuti in minerali quali ematite, magnetite e taconite.

carbon-cokeApprofondisco: il coke è un carbone artificiale che si ottiene quale residuo della distillazione secca del carbon fossile a temperatura elevata. Si presenta come un materiale di colore grigio più o meno chiaro, leggero e molto poroso, con lucentezza più o meno evidente.

La produzione dell’acciaio avviene in un impianto Siderurgico (dal greco, lavorazione del ferro) ma non può avvenire in modo diretto, perché bisogna produrre per prima la ghisa, un’altra lega del ferro.

Ghisa01Approfondisco: la ghisa è una lega ferro-carbonio caratterizzata da un tenore di carbonio compreso fra l’1,9% e il 5,5%. Si ottiene direttamente nell’altoforno dai minerali di ferro ed è detta ghisa d’altoforno o ghisa madre e viene prevalentemente usata per produrre, mediante affinazione, i diversi tipi di acciaio. Possiede le seguenti proprietà: è dura, fragile, poco resistente alla trazione e flessione, è resistente alla compressione e alla corrosione, non è malleabile, fonde a temperatura non molto elevata, consente la realizzazione di pezzi, per colaggio, anche molto complessi.

I passaggi che portano alla produzione dell’acciaio sono dunque i seguenti:

  • estrazione dei minerali ferrosi;
  • produzione della ghisa (altoforno);
  • produzione dell’acciaio (convertitore);
  • laminatoio.

Il processo siderurgico inizia con l’estrazione dei minerali metalliferi contenenti il ferro dalle cave o dalle miniere (il ferro non si trova allo stato puro in natura). Come per molti metalli, si effettua la loro frantumazione ed una successiva macinazione. Questi vengono lavati da polveri ed impurità e divisi in categorie a seconda della concentrazione dei metalli contenuti, mediante separazione magnetica o gravitazionale. Seguono poi le operazioni di flottazione, vagliatura, calibratura, essiccazione, calcinazione e arrostimento dei minerali. A questo punto i minerali di ferro sono stati ripuliti dalla maggior parte delle impurità e sono pronti per essere fusi negli altiforni.

ALTOFORNO E PRODUZIONE DELLA GHISA
Altoforno

Altoforno

L’altoforno è un forno a funzionamento continuo per la produzione della ghisa. Il suo nome deriva dalle sue dimensioni, infatti può raggiungere un’altezza di 100 metri e un diametro di 10.

E’ costituito da un ingresso superiore per la carica dei materiali chiamata bocca, da due tratti tronco-conici, di cui il tino costituisce il cono superiore e la sacca quello inferiore, uniti da una sezione cilindrica centrale chiamata ventre. La carica avviene dall’alto, dalla bocca, a strati di coke e minerale ferroso che vengono gettati alternativamente. In basso troviamo un altro anello cilindrico chiamato crogiolo, dove si deposita la ghisa madre e le scorie dette anche loppe.

È un forno a vento perché per raggiungere tali  temperature è necessario insufflare ossigeno dal basso.

La struttura del forno è costituita esternamente da una corazza di acciaio rivestita, internamente, da mattoni refrattari su un sottostrato di cemento anch’esso refrattario e le pareti del forno sono raffreddate da tubazioni d’acqua nelle zone più calde.

STUDIA CON I VIDEO:

Dall’alto verso il basso la temperatura aumenta gradualmente passando dai 400°C della bocca ai 1600°C del crogiolo.

Altoforno02

Parti e temperature dell’altoforno

La carica avviene dall’alto attraverso la bocca, con strati alterni di minerale (ossidi, ricchi di ferro, come ematiti, limoniti, magnetiti), fondente (calcare, dolomite, silice e talvolta bauxite) e coke.

I materiali scendendo lungo il forno incontrano temperature sempre più alte avviando una serie di trasformazioni fisico/chimiche che portano alla fusione del ferro e del fondente (ad esclusione del coke) fino alla formazione della ghisa.

Nel crogiolo sono disposti in alto due fori per la fuoriuscita delle loppe che galleggiano sopra la ghisa perché aventi peso specifico inferiore e in basso, appena sopra il fondo, due fori di colata della ghisa madre.

L’attività dell’altoforno, è definita a ciclo continuo perché non viene interrotta mai. Questo è dovuto al fatto che nell’altoforno per raggiungere le temperature necessarie, serve molta energia e tanto tempo, per cui il suo raffreddamento non è possibile; inoltre, un eventuale abbassamento della temperatura interna, comporterebbe la solidificazione del metallo che di fatto renderebbe inutilizzabile il forno stesso.

IL CONVERTITORE E L’ACCIAIO

Le materie prime per la produzione dell’acciaio sono:

  1. la ghisa greggia, proveniente dall’altoforno, che viene affinata (riduzione della percentuale del carbonio e delle impurità) ;
  2. il rottame di ferro, derivato da recuperi civili e industriali ;
  3. le ferroleghe, che sono leghe di ferro particolari, che vengono usate solo per la produzione di acciai; contengono una percentuale di carbonio generalmente molto bassa (dallo 0,1% all’1%):
  4. altri metalli come silicio, manganese, cromo, nichel, cobalto ecc… che vengono aggiunte agli acciai per migliorarne le caratteristiche.

La ghisa viene trasportata nell’acciaieria tramite siviere o tramite un carro ferroviario chiamato carro siluro.

Avesta, Heavy Lifting, Process Cranes

Siviera

Entrambi, realizzati in acciaio con rivestimento interno in mattoni refrattari, possono ruotare sul proprio asse per scaricare il loro contenuto. Le siviere, sono dei grandi contenitori con la forma di un bicchiere che trasportati e sospesi tramite carri ponti, versano il contenuto (ghisa) all’interno dei convertitori. I carri siluro hanno lo stesso scopo, ma vengono utilizzati quando il tragitto da compiere verso, l’acciaieria è maggiore.

Carro siluro

Carro siluro

La produzione dell’acciaio avviene attraverso dei forni chiamati convertitori ed iniziò a livello industriale nel 1856 grazie al genio inventivo di Herry Bessemer che, grazie a quello che fu definito forno Bessemer, rese possibile la produzione dell’acciaio in un’unica fase e in grandi quantità.

Convertitore Bessemer

Convertitore Bessemer

Schema di un convertitore Bessemer

Schema di un convertitore Bessemer

Il forno ha un capacità variabile da 10 a 20 tonnellate di ghisa fusa con un’altezza compresa tra i 6 e gli 8 metri e un diametro tra 3 e 4 metri. L’interno anche in questo caso è rivestito da materiale refrattario (mattoni) ed ha un movimento basculante che, grazie alla forma, consente un caricamento e un svuotamento rapido del forno. Tramite un tubo sul fondo, viene immessa aria calda che entrando in reazione alle alte temperature con il carbonio contenuto nella ghisa, lo brucia consentendo di abbassare il suo tenore e trasformando così la fragile ghisa in resistentissimo acciaio.

Forno LD

Forno L.D.

La moderna evoluzione del convertitore Bessemer è oggi rappresentata dai convertitori ad ossigeno L.D. (L sta per Linz e D sta per Donawitz, città austriache dove per la prima volta nel 1952 e 1953 il forno fu adottato). Carica, eliminazione delle scorie e introduzione dell’ossigeno avvengono dall’alto, dalla bocca, mentre la fuoriuscita dell’acciaio avviene da un’apertura laterale.

L’introduzione dell’ossigeno a grande pressione e in grande quantità fa in modo da eliminare quasi tutte le scorie e produrre un acciaio di elevatissima qualità, motivazione che ha permesso a questo metodo di imporsi sugli altri.

Approfondisco: l’acciaio è una lega ferro-carbonio caratterizzata da un tenore di carbonio inferiore al 2% ottenuta per riduzione del carbonio dalla ghisa nel convertitore.

FASE FINALE: IL LAMINATOIO
Laminatoio

Laminatoio

E’ un processo di riduzione dell’altezza o cambio di sezione di un pezzo attraverso la pressione applicata tramite due rulli rotanti (calandre).

Laminatoio2

La laminazione rappresenta il 90% dei processi di lavorazione per deformazioni ed è stata sviluppata nel 1500; si producono principalmente laminati che si suddividono in: piastre (spessore minore 6 mm), fogli o lamiere (spessore maggiore 6 mm). La laminazione viene effettuata a caldo o a freddo.

La laminazione a caldo serve uniformare il pezzo dimensionalmente e chiudere la porosità e avviene in generale ad una temperatura prossima ai 1000°C.

Si produce la bramma che può essere a sezione quadrata o rettangolare. Da questa si possono produrre con successivi passaggi travi di varia sezione oppure rotaie ferroviarie.

Dalle bramme, è possibile produrre pezzi più piccoli detti billette di sezione quadrata o tonda da utilizzare successivamente per la trafilatura.

Laminatoio3

Laminazione secondaria: produzione pezzi speciali

GUARDA I VIDEO:
PUOI LEGGERE ANCHE:
SCARICA L’ARTICOLO:
Gen 302017
 
Ogni giorno che passa la scienza trova nuove incredibili utilizzazioni per il grafene, il super materiale scoperto pochi anni fa e ottenuto dalla grafite.
Grafene3D04

Un gruppo di scienziati del MIT di Boston ha assemblato fogli bidimensionali di grafene in modo da ottenerne una “maglia tridimensionale”. Il risultato? Un materiale con una resistenza meccanica 10 volte maggiore di quella dell’acciaio ma con una densità pari a solo il 5% della lega ferrosa.

Approfondisco: la densità rappresenta il rapporto in una sostanza tra la massa e il suo volume (per massa si intende la quantità di materia presente in un corpo).

Il grafene è oramai ritenuto da tutti il materiale più resistente in assoluto tra quelli finora scoperti. Il problema fino ad oggi riscontrato dai ricercatori è stato proprio quello di poter utilizzare tale materiale per applicazioni che non fossero esclusivamente bidimensionali, in quanto è noto che la sua struttura è bidimensionale perché formata da un solo strato di atomi.

Struttura atomica del grafene

Struttura atomica del grafene

Gli studiosi del MIT, hanno passato a setaccio ogni singolo atomo del grafene analizzandone anche la disposizione geometrica e sono arrivati alla conclusione che combinando fiocchi di grafene in forme particolari si potesse sfruttare questa loro resistenza anche per scopi e soluzioni diverse. Sono state prese a riferimento le particolari strutture molecolari di alcuni coralli e delle diatomee, creature microscopiche il cui volume è bassissimo rispetto alla loro superficie. Sono stati assemblati fiocchi di grafene attraverso l’uso di calore e pressione in modo da modellarlo in forme tridimensionali che ricordano una spugna.

Grafene3D01

Campione di grafene 3D

Sono state provate differenti configurazioni geometriche fino a realizzare un campione che ha presentato una resistenza meccanica 10 volte superiore a quella di un buon acciaio ma con una densità  del 5% rispetto a quest’ultimo.

Grafene3D02

Differenti configurazioni in prova

Immaginate quali potranno essere le possibili utilizzazioni di questo nuovo super materiale soprattutto nel campo dell’edilizia.

Strutture e reticoli di grafene che avvolgono i materiali base dell’edilizia formati attraverso l’uso di calore e pressione. Una volta conformato l’oggetto, si potrebbe togliere il materiale base e lasciare la super struttura in grafene molto più leggera e resistente. Immaginate costruzioni tipo ponti o grattacieli quale beneficio potrebbero trarre da questa incredibile scoperta. Vedremo quali saranno gli sviluppi commerciali che questo nuovo prodotto sarà in grado di generare.

GUARDA I VIDEO:
PUOI LEGGERE ANCHE:
SCARICA L’ARTICOLO:
Gen 242017
 
ALLUMINIO
Alluminio Simbolo Alluminio atomica
DATI CONFIGURAZIONE
Bauxite SONY DSC
MINERALE ASPETTO

L’alluminio, è un metallo molto diffuso in natura; è il terzo elemento dopo l’ossigeno e il silicio. Ha simbolo chimico Al e numero atomico 13.

Fu isolato nel 1825 dallo scienziato H. C. Ørsted ma la sua produzione massiva iniziò a fine secolo, dopo il 1886 quando fu inventato il processo elettrolitico.

Di colore argenteo si  estrae da minerali il principale dei quali è la bauxite.

Miniera Bauxite

Miniera di bauxite

E’ il metallo più utilizzato dopo il ferro e deve il suo successo alle sue incredibili proprietà tra le quali quella di ricoprirsi con un sottilissimo strato di ossido che lo rende inalterabile agli agenti atmosferici.

ALUQuello prodotto con processo elettrolitico, viene definito alluminio primario, che si differenzia da quello ottenuto attraverso il riciclo detto alluminio secondario. L’alluminio ha infatti la caratteristica di poter essere riutilizzato all’infinito. Nel passato era più raro e costoso dell’oro e il riciclo ha aiutato a ridurne i costi di produzione fino al 90%. Infatti, questo metallo è estratto dall’allumina che ha una temperatura di fusione molto alta, circa 2.050°C richiedendo per questa operazione un enorme dispendio di energia che ne fa lievitare i costi.

PROPRIETA’

L’alluminio deve il suo successo alle straordinarie proprietà che lo contraddistinguono; infatti è:

  • conduttore elettrico;
  • conduttore termico;
  • resistente alla corrosione;
  • a-magnetico;
  • basso peso specifico;
  • duttile;
  • malleabile;
  • riciclabile;
  • igienico;
  • buona resistenza meccanica.
LEGHE

Miscelando l’alluminio con altri metalli, è possibile realizzare numerose leghe, dette appunto leggere perché con peso specifico molto basso, le cui proprietà superano in molti casi quelle del metallo di origine. Le più importanti sono:

  • silumin (silicio e alluminio);
  • anticorodal (magnesio, rame, manganese, silicio e alluminio);
  • peraluman (magnesio e alluminio);
  • duralluminio (rame, manganese, magnesio e alluminio).
IMPIEGHI

L’alluminio e le sue leghe servono per la costruzione di aerei, veicoli, navi, strutture, pezzi da fonderia, utensili di uso domestico ed elettronica.

Alluminio02 Alluminio03 Alluminio04
GUARDA I VIDEO:

 

PUOI LEGGERE ANCHE:
Lug 142016
 

AUROGEL01Chi lo avrebbe detto che dal latte i ricercatori sarebbero riusciti a produrre oro a 20 carati? Eppure è così; i ricercatori della ETH di Zurigo sono riusciti a creare in laboratorio un nuovo materiale dalle caratteristiche eccezionali. E’ super-leggero (1000 volte meno pesante dell’oro tradizionale) così leggero da galleggiare pure sulla schiuma del cappuccino, morbido al tatto e lucente.

Questo nuovo materiale, soprannominato aurogel dai suoi scopritori, potrà essere impiegato in molti campi, soprattutto quello della gioielleria e dell’alta moda per realizzare creazioni innovative e ancora non prevedibili.

AUROGEL02Ma come hanno ottenuto l’aurogel i ricercatori svizzeri? Sono partiti dalle proteine del latte scaldandole a tal punto da costringerle a scindersi in sottili fibre spesse solo un nanometro. A questo punto il miracolo: queste fibre sono state immerse in una soluzione di sali d’oro. Le fibre si sono mescolate tra di loro intrecciandosi formando una struttura attorno alla quale le particelle d’oro si sono cristallizzate permettendo la nascita di questo nuovo materiale superleggero.

La pepita realizzata in laboratorio è così leggera da restare sospesa sopra i petali di un fiore o addirittura galleggiare sulla schiuma di un cappuccino.

AUROGEL03

Cos’è che rende questo nuovo straordinario materiale leggero? Il fatto che è estremamente poroso; la sua struttura contiene per il 98% aria.

Il restante 2% è costituito da 4/5 di oro e per 1/5 dalle fibre del latte. Questa insolita combinazione rende il materiale molto malleabile senza compromettere le altre caratteristiche tipiche dell’oro quale la lucentezza e la grande lavorabilità.

PUOI LEGGERE ANCHE:
SCARICA L’ARTICOLO: