ENERGIA DA UN BATTITO D’ALI DI CICALA

 Energia  Commenti disabilitati su ENERGIA DA UN BATTITO D’ALI DI CICALA
Ott 142016
 

L’ottimizzazione delle tecnologie energetiche già in uso procedono di pari passo con la ricerca di nuove e efficaci soluzioni con lo scopo di massimizzare la “trasformazione” di forme di energia in elettricità (vedi Le Fonti e le Forme di Energia).

Cicala01

Le soluzioni provengono da ricerche condotte da molti laboratori internazionali nelle direzioni più disparate. L’ultima arriva dalla Cina, dall’Università di Shanghai Jiao Tong dove un gruppo di ricercatori ha studiato la particolare composizione delle ali delle cicale. Queste sono composte da una serie infinita di microscopici coni con punta verso l’esterno.

I ricercatori hanno visto nell’inconsueta composizione di queste ali, la soluzione in grado di migliorare sensibilmente l’efficienza dell’energia solare riducendo sprechi e massimizzando l’efficienza.

Cicala02

Riproducendo la struttura di queste ali attraverso l’uso di altri materiali semiconduttori, tipo il biossido di titanio, i ricercatori sono riusciti a creare una superficie in grado di abbattere quasi totalmente il riflesso della luce. Pensate al vantaggio che è possibile ottenere con una superficie del genere se applicata alle celle fotovoltaiche; questi pannelli, che trasformano la luce solare direttamente in elettricità continua quando colpiti dai fotoni provenienti dal Sole, possono incrementare la loro efficienza in maniera esponenziale perché la luce rimane intrappolata interamente sulla sua superficie senza dispersione e senza ritorno nell’atmosfera.

Cicala03In pratica i microscopici coni realizzati sul semi-conduttore, creano dei percorsi obbligati che la luce è costretta a percorrere in infinite riflessioni penetrando sempre più in profondità e non riuscendo più a riemergere a causa di queste e della dispersione. Le frequenze comprese tra i 450 e i 750 nanometri restano così intrappolate permettendo al pannello di assorbire la massima quantità di energia.

I pannelli possono, inoltre, essere esposti a temperature fino a 500 °C e restare efficientissimi anche in condizioni climatiche estreme conservando la loro incredibile qualità.

Lo studio, pubblicato sulla rivista internazionale “Applied Physics Letters”, descrive dettagliatamente il progetto e ne fa comprendere la portata.

Da un impercettibile battito d’ali una grande fonte di energia.

PUOI LEGGERE ANCHE:
SCARICA L’ARTICOLO:

ENERGIA DAL SOLE E DALLA PIOGGIA

 Innovazioni  Commenti disabilitati su ENERGIA DAL SOLE E DALLA PIOGGIA
Apr 122016
 

Ancora lui, il grafene, il materiale dei miracoli ricavato dalla grafite capace con la sua incredibile struttura di realizzare cambiamenti epocali in ogni campo. Lo studio e la sua applicazione questa volta arrivano dalla Cina ed esattamente dalla Ocean University of China.

FOTOGRAFENE03

In pratica, gli scienziati hanno applicato uno strato pari allo spessore di un atomo sulla superficie di pannelli fotovoltaici riuscendo in questo modo a produrre energia anche quando la superficie è ricoperta da gocce di pioggia.

FOTOGRAFENE02

Il grafene posto sulla superficie del vetro del pannello, riesce a scindere i vari sali contenuti nelle gocce d’acqua, sodio, calcio, ammonio, carichi positivamente riuscendo così a creare una differenza di potenziale sulla sua superficie che genera elettricità anche quando il pannello è ricoperto dalla pioggia.

Lo strato di grafene fa da filtro consentendo la scissione dei sali e il pannello, almeno in fase di prototipo è riuscito a produrre elettricità. Ancora si tratta di poca cosa, ma gli studi fanno sperare bene e l’obiettivo è quello di produrre energia elettrica direttamente dalla luce del sole  e in alternativa dalle gocce d’acqua che nelle giornate piovose ricoprono la sua superficie.

PUOI LEGGERE ANCHE:
SCARICA L’ARTICOLO:

SOLAR WRITING un’eccellenza tutta catanese

 Innovazioni  Commenti disabilitati su SOLAR WRITING un’eccellenza tutta catanese
Mag 282012
 

A volte abbiamo vicino a noi delle incredibili realtà e nemmeno lo sappiamo perché poco pubblicizzate e non sponsorizzate o semplicemente perché le cerchiamo lontano. L’altro giorno, mi sono imbattuto in un articolo su internet che ha attirato la mia attenzione perché parlava di tecnologia e Catania. Ho scoperto con mio stupore che nella nostra città, si tiene annualmente e quest’anno cadeva tra il 25 e il 27 maggio, un evento denominato “Start Up Weekend Catania” che riunisce al Beasy Bureau sviluppatori, designer, esperti di business e investitori.

Tra i progetti e le invenzioni presentate all’evento la più importante è sicuramente quella di tre giovani ricercatori catanesi, Giuseppe Suriani, Salvatore Bagiante e Michele Corselli, che stanno registrando un brevetto innovativo per la realizzazione di una pellicola, applicabile anche ai vestiti che, funge da caricatore per devices elettronici. Si tratta di un caricatore solare dello spessore di un foglio utile a ricaricare, in qualunque luogo, dispositivi quali smartphone, tablet  e lettori mp3. Il progetto, diffuso dai tre in versione preliminare, prende il nome di SOLAR WRITING e si tratta di sottilissime celle fotovoltaiche, flessibili e leggere che si ricaricano di energia semplicemente con l’esposizione al sole. Questa pellicola, si può sovrapporre quasi come un adesivo ai tessuti di qualunque capo di abbigliamento, oltre che a zaini e cartelle. L’obiettivo, come descritto dagli stessi autori, è rendersi energeticamente indipendenti da fili, prese, e caricabatterie ingombranti e pesanti. Adesivi low cost che ricaricano il telefonino all’infinito, tutte le volte che si vuole, avendo bisogno soltanto di una buona giornata limpida. “Solar Writing – aggiungono i tre inventori catanesi – ha bisogno solo di qualche ora di carica alla luce del sole, e per l’Mp3 appena di un’ora e mezza. Il design è una delle caratteristiche che stiamo sviluppando, perchè di solito tecnologia e moda si sposano difficilmente e invece noi vogliamo dare molta attenzione alla forma”.


Giuseppe e Michele sono ingegneri microelettronici, Salvatore un fisico esperto nella scienza dei materiali. Insieme hanno fondato una start-up, la “eRALOS3”, che ha vinto riconoscimenti internazionali come “Mind the Bridge Business Plan Competition”, e il primo premio “Wind Business Factor”.

Auguriamo anche noi di educazionetecnica.com tanta fortuna a questi giovani ragazzi che nonostante il periodo hanno comunque deciso di investire e lavorare in Italia e soprattutto al sud. Questo conferma che se si hanno delle buone idee, queste sono valide in ogni parte del mondo.

IL SOLE A SCUOLA

 Innovazioni  Commenti disabilitati su IL SOLE A SCUOLA
Mar 272012
 
Oggi EducazioneTecnica.com svolge un servizio pubblico-informativo diffondendo una notizia che riguarda da vicino il mondo della scuola e la tecnologia.
Nel progetto di diffusione delle teknologie nelle scuole finalizzate al risparmio energetico, il Ministero dell’Ambiente ha realizzato un bando di concorso rivolto a Comuni e Provincie per la diffusione degli impianti fotovoltaici sugli edifici scolastici. Il bando mette a disposizione l’importo di tre milioni di euro pari al 100% del costo ammissibile con un limite massimo di 40 mila euro per edificio scolastico Non sono previsti oneri a carico dell’ente locale. Il primo bando diramato dal Ministero, chiamato IL SOLE A SCUOLA prevedeva una copertura economica di 9 milioni e 700 mila euro ed  ha visto la partecipazione di oltre 1.300 scuole. Circa 800 gli interventi approvati, 500 dei quali completati con una massiccia adesione delle scuole siciliane. La seconda edizione di questo concorso prevede di raggiungere altre 1000 scuole pubbliche. Il premio andrà a chi produrrà i migliori elaborati sull’analisi e il risparmio energetico. Sulla pagina del Ministero www.minambiente.it, il testo e tutte le informazioni sul nuovo  bando. Il comunicato relativo al Bando in questione è già stato pubblicato sulla Gazzetta Ufficiale del 20 marzo 2012.

 

Il bando, come detto è rivolto agli enti pubblici, proprietari di edifici che ospitano scuole primarie e secondarie con il coinvolgimento nel progetto  di analisi energetica e interventi miranti alla razionalizzrivolto ai Comuni e alle Province che siano proprietari di edifici ospitanti scuole medie inferiori o superiori ed elementari, è finalizzato alla realizzazione di impianti fotovoltaici sugli edifici scolastici e, simultaneamente, all’ avvio di un’attività didattica volta alla realizzazione di analisi energetiche e di interventi di razionalizzazione e risparmio energetico nei suddetti edifici, tramite il coinvolgimento degli studenti.

FOTOVOLTAICO e SOLARE a bassa temperatura

 Energia  Commenti disabilitati su FOTOVOLTAICO e SOLARE a bassa temperatura
Feb 152012
 

L’energia che sprigiona il Sole può essere utilizzata anche attraverso metodi diversi dalle centrali a concentrazione e per finalità diverse dalla produzione di energia elettrica. Diversi sistemi sono in studio e alcuni ormai sono giunti a maturazione e trovano impiego nelle nostre case e città. Tra queste tecnologie, possiamo citare i pannelli solari per la produzione di calore a bassa temperatura e gli impianti fotovoltaici che trasformano direttamente l’Energia Radiante del Sole in energia elettrica.

PANNELLI SOLARI

Schema di Impianto a Pannelli Solari

I pannelli solari, funzionano essenzialmente per la produzione di calore a bassa temperatura e sfruttano il principio dell’effetto serra. Una piastra captante metallica, raccoglie l’Energia Solare e inizia ad emettere calore (Energia Termica).

Quale forma di ENERGIA sfruttiamo in un impianto a Pannelli Solari?

Come sono fatti gli IMPIANTI A PANNELLI SOLARI?

Gli impianti solari termici utilizzati sono di due tipi:

  • a circolazione naturale;
  • a circolazione forzata.

Gli impianti a circolazione naturale sono sistemi monoblocco a circuito chiuso, che funzionano senza necessità di pompe né di componenti elettrici. Sono costituiti da un collettore solare esposto alle radiazioni solari, all’interno del quale l’acqua si scalda e sale per convezione (effetto termosifone) verso il serbatoio, confluendo quindi nel circuito domestico.

Gli impianti a circolazione forzata hanno il serbatoio montato separatamente (nel sottotetto o nel locale caldaia) e il liquido del circuito primario è spinto da una pompa. La pompa di circolazione viene messa in moto da una centralina elettronica che confronta le temperature dei collettori e dell’acqua nel serbatoio di accumulo rilevata da apposite sonde.

Impianto a Circolazione Naturale Impianto a Circolazione Forzata

I componenti principali di un sistema a Pannelli Solari termici sono:

  1. pannello solare;
  2. serbatoio di accumulo dell’acqua calda;
  3. pompa (solo nei sistemi a circolazione forzata);
  4. centralina elettronica;
  5. collegamenti idraulici ed elettrici.

PANNELLO SOLARE – possono essere raggruppati in 2 tipi principali: con tubi sottovuoto, oppure vetrati. Esistono, comunque, molte varianti come ad esempio pannelli ad aria, pannelli scoperti, a cupola.

  • Pannelli solari sottovuoto – si presentano come tubi di vetro, al cui interno viene tolta tutta l’aria possibile creando il vuoto, in modo che venga impedita la cessione del calore (effetto Thermos). All’interno viene posto un elemento assorbitore di calore, per lo più un tubo di rame, e vengono  denominati “tubi heat-pipe“. In alcune versioni a circolazione naturale all’interno del tubo può circolare direttamente l’acqua da riscaldare. Questo tipo di pannelli ha un ottimo rendimento in tutti i mesi dell’anno e sono adatti ad essere installati anche in condizioni climatiche molto rigide: quindi indicati nel nord Italia, così come al sud.
Schema Pannello Heat-Pipe Pannello Heat-Pipe
  • Pannelli solari vetrati – sono storicamente i primi apparsi sul mercato. Sono composti da un vetro trasparente alla luce del sole, ma opaco ai raggi infrarossi, che sono così trattenuti all’interno. I raggi del sole, che raggiungono la parte interna del pannello, lo scaldano e il calore viene trattenuto all’interno (effetto serra). La superficie di questi pannelli può essere, o meno, trattata con prodotti che ne migliorano il rendimento (ossia la capacità di “trattenere” i raggi). Può, inoltre, essere presente un serbatoio di accumulo integrato, oppure un accumulo separato, più indicato per le località particolarmente rigide.
Schema Pannello Solare a Vetro Pannello Solare a Vetro

Serbatoio, pompa, centralina elettronica e collegamenti idraulici e elettrici sono gli elementi che completano un impianto solare termico a bassa temperatura.

FOTOVOLTAICO

Il sistema fotovoltaico è un insieme di componenti meccanici, elettrici ed elettronici che permettono di captare l’Energia Solare e di trasformarla in Energia Elettrica. Questo avviene sfruttando un fenomeno fisico, noto come effetto fotovoltaico, cioè la capacità di alcuni materiali semiconduttori (normalmente silicio) di generare elettricità quando esposti alla Radiazione Luminosa.

Quale forma di ENERGIA sfruttiamo in un impianto fotovoltaico?

Quando i fotoni (unità elementare, priva di carica elettrica e di massa, che si propaga esattamente alla velocità della luce) colpiscono una cella fotovoltaica, una parte di energia è assorbita dal materiale (silicio drogato) e alcuni elettroni, scalzati dalla loro posizione, scorrono attraverso il materiale producendo una corrente continua che può essere raccolta sulle superfici della cella.

Com’è fatto un IMPIANTO FOTOVOLTAICO?

Gli impianti fotovoltaici possono essere suddivisi in due categorie: quelli connessi alla rete elettrica (grid-connected) e quelli isolati (stand-alone). Nei primi, la corrente generata viene inviata ad un convertitore (inverter) dal quale esce sotto forma di corrente alternata, tale da poter essere poi trasformata in corrente a media tensione dal trasformatore, prima di essere immessa nella linea di distribuzione. I secondi invece sono in genere dotati di accumulo e possono essere senza o con inverter. Il sistema di immagazzinamento è necessario per garantire la continuità dell’erogazione anche nei momenti in cui non viene prodotta. Questo avviene mediante accumulatori elettrochimici (batterie).

Schema di Impianto Fotovoltaico

Nel sistema grid-connected non è previsto un sistema di accumulo in quanto l’energia prodotta durante le ore di insolazione viene immessa nella rete elettrica; viceversa, durante le ore di insolazione scarsa o nulla il carico viene alimentato dalla rete.

Un Impianto Fotovoltaico è costituito dai seguenti elementi:

  1. celle fotovoltaiche;
  2. inverter;
  3. contatore energia prodotta (GSE);
  4. contatore energia scambiata (bidirezionale).

CELLA FOTOVOLTAICA – è un diodo (componente elettronico che consente il passaggio della corrente in una direzione e ne impedisce il passaggio in quella opposta) di grande superficie che, esposto ai raggi del sole, converte la Radiazione Solare in elettricità. La cella si comporta come una minuscola batteria e produce una corrente di 3 Ampere con una tensione di 0,5 Volt, quindi una potenza che sfiora 1,5 Watt.

Schema di funzionamento di una cella di silicio

Sono di colore blu scuro a causa dell’ossido di titanio presente nel rivestimento antiriflettente, fondamentale per massimizzare la captazione dell’irraggiamento solare. La loro forma è quasi sempre quadrata o circolare e le misure variano dai 10cm x 10cm ai 15cm x 15cm. Sono costituite principalmente da silicio,  arsenuro di gallio e telloluro di cadmio, tutti semimetalli. Il flusso di elettroni è orientato, ossia fluisce in una determinata direzione, all’interno della cella; su questa sono sovrapposti altri due strati di silicio (tipo n e tipo p), trattati ognuno con un particolare elemento chimico (operazione detta di drogaggio), fosforo e boro. Di tutta l’energia che investe la cella solare sotto forma di radiazione luminosa, solo una parte viene convertita in energia elettrica. L’efficienza di conversione delle celle commerciali al silicio è compresa tra il 10% e il 20%.

Cella fotovoltaica Celle ultrasottili

Il fotovoltaico può essere usato anche per realizzare delle centrali per la produzione di energia elettrica. In questo caso, bisognerà collegare in serie o in parallelo, più celle fotovoltaiche tra di loro.

Campo fotovoltaico

Sapendo che ogni cella produce circa 1,5W di potenza elettrica, basterà conoscere il consumo dell’area da servire per stabilire quante celle dovranno essere collegate tra loro per fornire l’energia necessaria. Per stabilire queste connessioni e renderle fattibili, le celle vengono combinate tra di loro in strutture regolari sempre più grandi che prendono i seguenti nomi (vedi schema sopra):

  • modulo;
  • pannello;
  • stringa;
  • campo.

MODULO – i più comuni sono costituiti da 36 o 72 celle. Queste sono assemblate fra uno strato superiore di vetro e uno strato inferiore di materiale plastico (il tedlar) e racchiuse da una cornice di alluminio. Nella parte posteriore del modulo è collocata una scatola di giunzione in cui vengono alloggiati i diodi e i contatti elettrici. Il modulo fotovoltaico ha una dimensione di circa mezzo metro quadro e le taglie normalmente in commercio vanno da 100 a 300 Watt di potenza.

Struttura di un pannello fotovoltaico

PANNELLO – è un insieme di più moduli collegati in serie o in parallelo su una struttura rigida.

STRINGA – per fornire la tensione richiesta, più moduli o più pannelli, possono essere collegati elettricamente in serie costituendo una stringa.

CAMPO – è un collegamento elettrico di più stringhe. Nella fase di progettazione devono essere effettuate alcune scelte determinanti. Innanzitutto bisogna scegliere tra una configurazione in serie o una in parallelo dei moduli.

Collegamento in Serie Collegamento in Parallelo

La distanza minima fra le file di pannelli non può essere casuale ma deve essere fatta in modo da evitare che l’ombra della fila anteriore possa coprire quella immediatamente posteriore. È quindi necessario calcolare la distanza minima tra le file in funzione dell’altezza dei pannelli, della latitudine del luogo e dell’angolo di inclinazione dei pannelli.

Pannello fotovoltaico Stringa fotovoltaica Campo fotovoltaico

INVERTER –  i pannelli fotovoltaici generano corrente di tipo continuo. Il sistema di distribuzione dell’energia nazionale avviene, invece, in corrente alternata. Per questo motivo, viene installato un dispositivo elettronico chiamato inverter, capace di trasformare l’energia elettrica da continua ad alternata. A questo punto, per rendere la corrente prodotta da una centrale fotovoltaica idonea alle utenze da servire, bisogna installare una serie di dispositivi che prendono il nome di B.O.S. (Balance of System) che comprendono, oltre all’inverter, il trasformatore, i quadri elettrici e i sistemi ausiliari di centrale.

CONTATORE ENERGIA PRODOTTA (GSE) – serve a misurare l’energia prodotta giornalmente dall’impianto. Questo dispositivo è essenziale per capire quanto si sta guadagnando dalla produzione di energia del proprio impianto fotovoltaico. I  dati di questo contatore vengono periodicamente trasmessi al Gestore dei Servizi Elettrici (GSE) il quale li elabora e calcola l’incentivo totale sull’energia prodotta.

CONTATORE ENERGIA SCAMBIATA (bidirezionale) – questo strumento elettronico, serve nel momento in cui il nostro impianto fotovoltaico produce più energia di quanto l’utenza ne possa consumare. Allora serve un secondo contatore che consenta il passaggio di un flusso di energia elettrica dall’impianto fotovoltaico verso la rete pubblica (flusso uscente). Tale contatore garantisce, inoltre, il flusso di corrente in senso opposto (flusso entrante) nei momenti in cui l’impianto fotovoltaico non è in grado di sopperire alle esigenze dei carichi elettrici (ad esempio nelle ore notturne o in assenza di Sole).

Video1

Le CENTRALI SOLARI a Concentrazione

 Energia  Commenti disabilitati su Le CENTRALI SOLARI a Concentrazione
Feb 082012
 

Il Sole fornisce quotidianamente una quantità immensa di energia gratuita, pulita e inesauribile. Si è misurato che irraggia ogni metro quadro di superficie del nostro pianeta con 1Kw di energia al giorno. Il Sole, inoltre, determina l’esistenza anche di altre forme di energia sulla Terra; si pensi all’acqua e al vento per citarne qualcuna. Le uniche fonti di energia non influenzate direttamente dal Sole sono la geotermica e la nucleare. Esistono diversi modi per sfruttare e impiegare l’energia solare. Tra questi abbiamo il riscaldamento, la produzione di acqua calda e la produzione di energia elettrica. Il processo che consente di sfruttare l’energia del Sole, è come negli altri casi complesso e richiede diversi passaggi di stato.

Quale forma di ENERGIA sfruttiamo in una centrale solare?

Una centrale solare è costituita essenzialmente da specchi o altri strumenti che fungono da captatori per l’Energia Radiante del Sole. Questi concentrano i raggi catturati in un punto chiamato ricevitore che viene fortemente riscaldato trasformando l’energia catturata in Energia Termica. Questa consente di far evaporare dell’acqua che diventa vapore surriscaldato ad alta temperatura, in grado di far ruotare una turbina a vapore; l’energia termica viene così trasformata in Energia Meccanica e infine, attraverso un generatore collegato alla turbina, questa diventa Energia Elettrica.

Com’è fatta una CENTRALE SOLARE?

Innanzitutto bisogna sapere che esistono diversi sistemi oggi in uso per sfruttare l’energia solare. Questi sistemi vengono comunemente chiamati a “concentrazione solare” e sono distinti in:

  • Impianti parabolici lineari;
  • Impianti a torre;
  • Impianti lineari Fresnel;
  • Impianti a disco parabolico.
IMPIANTI PARABOLICI LINEARI

Schema di Centrale Parabolica Lineare

Sono in assoluto quelli più diffusi. Per ottenere la trasformazione energetica descritta, questo tipo di centrali è costituita da specchi che hanno una forma parabolica, tale da riflettere i raggi solari tutti su di un punto (il fuoco della parabola) dove si trova il tubo assorbitore.

Schema di funzionamento

Per comprendere il principio di funzionamento basta pensare ad una lente di ingrandimento puntata su un foglio: essa raccoglie i raggi solari concentrandoli in un unico punto (che corrisponde al nostro assorbitore). Dopo qualche istante, quel punto raggiunge temperature talmente elevate da far incendiare il foglio. Nello specchio parabolico l’assorbitore è un tubo che attraversa per lungo tutti gli specchi che vengono messi in serie. E’ possibile cambiare l’orientamento degli specchi ma unicamente ruotandoli su se stessi (un grado di libertà). Gli elementi costituenti una centrale parabolica lineare sono:

  1. pannelli solari (riflettore);
  2. tubo ricevitore (captatore);
  3. generatore di vapore;
  4. turbina a vapore;
  5. generatore;
  6. trasformatore.
PANNELLI SOLARI – sono specchi dalla forma curva (parabola) progettati per concentrare i raggi solari in un unico punto (fuoco). Sono realizzati in un particolare vetro in grado di concentrare una elevatissima quantità di raggi solari e sono montati su di una struttura in alluminio comandata da un computer in grado di farli ruotare in una direzione per seguire il Sole. Questi pannelli di vetro vengono montati in file parallele lunghe alcune centinaia di metri che formano un campo solare.

TUBO RICEVITORE – è costituito da un tubo di acciaio inox, ricoperto con vari strati di materiali altamente assorbenti e inguainato in un tubo di vetro Pirex sottovuoto. Grazie alla presenza del vetro, il fluido termovettore (normalmente un olio minerale) può raggiungere anche temperature di 400°C e oltre a seconda del tipo di rivestimenti. Il vetro è trattato con strati antiriflettenti sia internamente che esternamente ed è dotato di soffietti alle estremità che consentono di chiudere ermeticamente il fluido e di essere connessi con facilità agli altri tubi per realizzare un percorso continuo.

GENERATORE DI VAPORE – si tratta di un apparecchio che trasferisce calore ad un liquido (generalmente acqua) in modo da generare vapore. Il calore in questo caso è quello sviluppato dall’azione irraggiante del Sole sul tubo ricevitore e quindi, sull’olio minerale contenuto al suo interno.

TURBINA A VAPORE – è il componente di una centrale termoelettrica dove l’energia termodinamica del vapore viene convertita in lavoro meccanico. Il vapore, infatti, esercita un lavoro sulle pareti dei condotti, man mano che diminuisce la sua pressione, cioè man mano che si espande. Questo lavoro, mette in rotazione un albero motore collegato ad un generatore elettrico.
CONDENSATORE – è un dispositivo per il trattamento dei vapori caldi e contaminati che sfrutta il fenomeno della condensazione per rimuovere gli elementi inquinanti da un flusso d’aria. La condensazione può essere ottenuta attraverso un aumento della pressione o con una riduzione di temperatura o combinando i due processi.
GENERATORE – L’alternatore e’ un generatore di corrente elettrica. È costituito da due parti fondamentali, una fissa e l’altra rotante, dette rispettivamente statore e rotore, su cui sono disposti avvolgimenti di rame isolati. Normalmente l’alternatore lo ritroviamo in tutti i tipi di centrali per la produzione di energia elettrica perché riesce a trasformare l’energia meccanica di una turbina (idraulica, eolica, a vapore, ecc.) in energia elettrica.

Alternatore (generatore)

TRASFORMATORE – è una macchina elettrica che serve a trasferire, energia elettrica a corrente alternata da un circuito ad un altro modificandone le caratteristiche. E’ formato da un nucleo di ferro a cui sono avvolte spire di rame in due diversi avvolgimenti, dei quali uno riceve energia dalla linea di alimentazione, mentre l’altro è collegato ai circuiti di utilizzazione.

PRO e CONTRO di una Centrale Parabolica Lineare

I vantaggi di questo tipo di centrale derivano dal fatto che si tratta di una tecnologia ormai matura e collaudata, gli svantaggi sono però molteplici. Innanzitutto la temperatura operativa raggiunta dal fluido termovettore non è sufficientemente alta, gli specchi curvi sono molto costosi e difficili da sostituire e da mantenere, il fluido termovettore è altamente infiammabile e tossico, per cui si pone l’ulteriore problema dello stoccaggio. Infine, questo tipo di centrale risulta poco conveniente da un punto di vista dei costi di gestione.

IMPIANTI A TORRE

Schema di Centrale a Torre

Il sistema a torre centrale è una evoluzione di quello lineare, del quale cerca di superare tutti i limiti. E’ costituto da un campo di eliostati che riflettono e concentrano la radiazione solare su un ricevitore posto alla sommità di una torre. Nel ricevitore fluisce un fluido che riscaldandosi ad alta temperatura è in grado di produrre energia o di immagazzinarla sotto forma di calore. Se il fluido è acqua si ha produzione di vapore ad alta pressione direttamente nel ricevitore, se nel ricevitore circolano aria o sali fusi, il vapore viene prodotto in un generatore di vapore nel blocco energetico dell’impianto. Gli elementi fondamentali di un impianto di questo tipo sono:

  1. eliostati (riflettore);
  2. torre (captatore);
  3. serbatoi accumulo sali caldi e freddi;
  4. generatore di vapore;
  5. torre di raffreddamento;
  6. turbina a vapore;
  7. generatore;
  8. trasformatore.

ELIOSTATI – sono grandi specchi, piani o leggermente concavi, in grado di concentrare fino a 30 volte la radiazione solare a grande distanza, attualmente fino a 1Km. Vengono disposti radialmente attorno alla torre secondo una configurazione a scacchiera in modo da permettere la riflessione della radiazione solare sul ricevitore della torre durante il movimento del Sole. Ogni eliostato si muove in modo diverso dagli altri per effetto della sua posizione relativa rispetto alla torre.

Al crescere delle dimensioni cambia la distribuzione degli eliostati, da ventaglio a campo circolare; l’efficenza è funzione della disposizione degli specchi sul campo. Questa efficienza può essere ridotta a causa di alcuni fattori errati di progettazione; questi sono:

  • Shadowing (proiezione dell’ombra di un eliostato su quello posteriore);
  • Blocking (intercettazione della radiazione riflessa da un eliostato posto anteriormente);
  • Spillage (frazione di radiazione riflessa da un eliostato che esce dal bersaglio del ricevitore).

TORRE – struttura a torre posta al centro dell’impianto. In questo caso si parla di impianto a torre centrale o centrale solare a torre. Nel ricevitore al vertice della torre scorre il fluido termovettore che trasferisce il calore a un generatore di vapore, che alimenta un turboalternatore. Con questo sistema si possono raggiungere fattori di concentrazione, e quindi temperature, superiori rispetto ai collettori parabolici lineari.

SERBATOI DI ACCUMULO – nelle centrali a torreil fluido termoconvettore è costituito da sali fusi, una miscela di nitrati di sodio e potassio, che consentono temperature operative più elevate (500-550°C), rispetto all’olio diatermico, con migliore rendimento nella trasformazione in energia elettrica. I sali fusi, hanno inoltre, una discreta capacità di accumulo e conservazione del calore, consentendo di ovviare alla variabilità giornaliera della radiazione solare e alla sua assenza notturna. Presentano però l’inconveniente di solidificare a temperature tra 142 e 238°C, è necessario perciò mantenerli sempre in circolazione a temperature maggiori, per evitarne la solidificazione.

Le centrali di questo tipo funzionano prelevando con una pompa dal serbatoio freddo, i sali in esso depositati e facendoli circolare nel collettore solare, fino a raggiungere la temperatura di 550°C; a questo punto i sali così riscaldati vengono inviati in un serbatoio caldo dove vengono accumulati. Dal serbatoio caldo i sali passano nel generatore di vapore, cedono calore all’acqua contenuta in esso, la trasformano in vapore surriscaldato e ritornano nel serbatoio freddo. Il vapore surriscaldato aziona la turbina della centrale elettrica. L’accumulo con sali fusi consente una limitata autonomia di funzionamento in assenza o insufficienza insolazione.

GENERATORE DI VAPORE – (vedi impianti parabolici lineari).

TORRE DI RAFFREDDAMENTO – è un’installazione che preleva calore dall’acqua tramite evaporazione e conduzione. L’acqua viene pompata in cima alla torre di raffreddamento e quindi fluisce giù attraverso involucri di plastica o di legno. Ciò causa la formazione di goccie. Mentre fluisce verso il basso, l’acqua emette calore che mescola con la corrente d’aria superiore, raffreddandosi di 10-20 °C. Parte dell’acqua evapora, emettendo più calore. Il vapore acqueo può a volte essere osservato sopra la torre di raffreddamento.

Torri di Raffreddamento

TURBINA A VAPORE – (vedi impianti parabolici lineari).

GENERATORE – (vedi impianti parabolici lineari).

TRASFORMATORE – (vedi impianti parabolici lineari).

PRO e CONTRO di una Centrale a Torre

Le centrali a torre risolvono molti dei problemi delle centrali paraboliche. Innanzitutto con gli eliostati piani che, hanno un costo notevolmente inferiore, consentono una più facile manutenzione e pulizia e sono più facilmente installabili.

I sali, usati al posto degli oli, consentono di accumulare il calore e di riutilizzarlo durante i periodi di scarso irraggiamento. Inoltre, operano a temperature più elevate e quindi sono più efficienti dal punto di vista energetico. Infine, i sali non sono tossici e una volta dismessi dalla centrale possono essere riutilizzati in agricoltura come concimi.

Queste centrali presentano però alcuni inconvenienti: il sistema caldo-freddo richiede un processo di distribuzione molto complesso, cosa che aumenta i costi di progettazione e costruzione. La disposizione degli specchi a semicerchio rende difficoltosa la loro collocazione per evitare che si influenzino negativamente reciprocamente e risulta più complessa la concentrazione dei raggi sul captatore man mano che aumenta la distanza da questo. Infine anche in questo caso la centrale crea un forte impatto sull’ambiente.

Video1

IMPIANTI LINEARI FRESNEL

Schema specchi Fresnel

E’ un sistema di collettori abbastanza recente. Solo da poco tempo si stanno iniziando a realizzare impianti per la produzione di calore ad alta temperatura di questo tipo. E’ costituto da un campo di eliostati lineari che riflettono e concentrano la radiazione solare su un tubo ricevitore posto in posizione orizzontale fissa. Gli eliostati sono in grado di ruotare lungo l’asse longitudinale in modo da inseguire il moto del Sole e mantenere costantemente la radiazione solare riflessa sul tubo ricevitore.
Il tubo ricevitore è in genere costituito da un tubo in acciaio protetto da vetro; attualmente non è mantenuto sottovuoto, tuttavia sono in corso esperienze anche con tubi ricevitori del tipo usato per le parabole lineari.
Gli impianti finora realizzati prevedono la produzione di vapore in campo fino a 270°C, anche se sono state realizzate esperienze con produzione di vapore fino 400°C.

PRO e CONTRO di un Impianto FRESNEL
Questo tipo di impianti presenta alcune caratteristiche che li rendono competitivi nei riguardi di quelli più diffusi. Permettono, infatti, di risparmiare parecchio suolo rispetto a quelli parabolici lineari e hanno un costo di installazione di gran lunga inferiore dato il minor uso di materiali da impiegare.

Per contro, però, il loro rendimento è inferiore a causa della minore efficienza sia dei collettori (temperatura, ombreggiamenti, tubo ricevitore non isolato in vuoto) che del ciclo termodinamico.

Impianto solare Fresnel

Video1

IMPIANTI A DISCO PARABOLICO

Schema impianto a Disco Parabolico

Detti anche sistemi Dish–Stirling sono generatori solari termoelettrici di piccole dimensioni. In questi sistemi un paraboloide di alcuni metri di diametro concentra la radiazione sul ricevitore di un motore Stirling di alcuni kW, in grado di azionare un alternatore collegato direttamente alla rete elettrica.
Sono in grado di funzionare in modo completamente automatico: si accendono al mattino, inseguono il Sole nel suo modo diurno e ritornano in posizione di alba a fine giornata, restando in condizioni di attesa durante la notte.

Questi sistemi possono funzionare o isolati, senza sorveglianza continua, oppure in cluster o solar farm da centinaia o migliaia di esemplari.


L’elevata efficienza di conversione, la facilità di installazione e la possibilità di riduzione dei costi con la produzione in grande serie, rendono questi sistemi applicabili alla generazione distribuita ed in prospettiva competitivi anche con i grandi impianti solari termodinamici.

Video1


Video1

Schema di Impianto Solare a Concentrazione con Sistema di Accumulo del Calore