SOLETAIR: BENZINA DALL’ACQUA

 Energia, Innovazioni  Commenti disabilitati su SOLETAIR: BENZINA DALL’ACQUA
Ago 222017
 

In un’epoca in cui si parla sempre più spesso di energie alternative ai combustibili fossili, sia in termini di costo, che ambientali, che di durata, l’anchorman Jamie Hyneman, autore e conduttore della nota serie televisiva MythBusters miti da sfatare, ha realizzato un impianto pilota  di quello che è noto come progetto SOLETAIR.

SOLETAIR01

Di cosa si tratta? Del primo sistema in grado di produrre combustibili fossili liquidi a partire da energie pulite. Il progetto SOLETAIR, ideato dalla INERATEC è stato in grado di produrre circa 200 litri di carburante sintetico utilizzando solo energia solare, anidride carbonica estratta dall’aria e idrogeno ottenuto dalla dissociazione dell’acqua ottenuta, anche questa, con l’energia solare.

SOLETAIR03La maggior parte di noi sanno che, i combustibili fossili sono composti da idrogeno-carburi, ossia molecole formate da idrogeno e carbonio. Ad esempio il metano che si presenta in natura allo stato gassoso è composto da una molecola molto semplice che ha formula CH4. Il carbonio è presente nell’anidride carbonica e l’idrogeno nell’acqua.

SOLETAIR02

Il sistema SOLETAIR, è costituito da un semplice container facilmente trasportabile e installabile ovunque, in grado di produrre i più comuni idrocarburi come benzina, gasolio o metano, ma anche molecole diverse come quelle necessarie per la produzione di materie plastiche.

L’impianto è in grado di produrre, da queste semplici materie prime, circa 80 litri di benzina al giorno. Inoltre, è modulare, ossia consente il collegamento di più container per ottenere un impianto la cui produzione soddisfi le esigenze del contesto e il processo di sintesi è ottimizzato per sviluppare il minor calore possibile e per realizzare i carburanti con le migliori proprietà.

GUARDA I VIDEO:
SOLETAIR04

Dal sito: http://www.neocarbonenergy.fi/soletair/

ENERGIA DAL CORPO UMANO

 Energia, Innovazioni  Commenti disabilitati su ENERGIA DAL CORPO UMANO
Giu 222017
 

Il cuore, come altri organi importanti del nostro corpo, quando per una molteplicità di cause, smettono di funzionare correttamente, è possibile mantenerli in attività attraverso specifici dispositivi medici. Il limite di questi, sta nel fatto che utilizzano sistemi di alimentazione basati su sostanze non sempre bio-compatibili e che devono sostituire gli accumulatori quando scarichi.

Superconduttore01

I ricercatori dell’Università della California, Los Angeles (UCLA) e dell’Università del Connecticut hanno realizzato un nuovo dispositivo che è totalmente bio-compatibile, sfrutta l’estrema sottigliezza del grafene ed ha carica praticamente inesauribile. Si tratta di una specie di batteria in grado di estrarre energia dal corpo umano e inviarla ad un circuito elettrico utilizzabile da dispositivi medici.

Si tratta di un super-condensatore composto da un elemento chiamato raccoglitore, formato con strati di grafene e proteine umane modificate. Questi si comportano come se fossero gli elettrodi di una pila, capaci di accumulare l’energia dal corpo umano a partire dal movimento e dal calore. In questo modo estraggono cariche elettriche dagli ioni che si trovano nei liquidi che lo compongono, come sangue e urine.

La scelta del grafene è dovuta alla sua estrema sottigliezza. Avendo infatti lo spessore di un solo atomo, è possibile creare dei dispositivi da impiantare sul corpo del paziente, estremamente sottili, anche meno di un capello e conseguentemente estremamente flessibili e adattabili.

Superconduttore03Il super-condensatori, inoltre, possono essere caricati e scaricati molto velocemente, offrendo una maggiore densità e quindi potenza, stabilità nei cicli di ricarica e la possibilità di utilizzare anche fluidi esterni al corpo umano come elettroliti.

I vantaggi di questa soluzione sono molteplici; questo sistema di accumulo, come detto è bio-compatibile, quindi dovrebbe eliminare i problemi di rigetto nei pazienti. Utilizza materiali non tossici, anzi altamente tollerabili dal corpo umano; i cicli di ricarica possono essere infiniti eliminando in questo modo la necessità di ricorrere a interventi per la sostituzione delle batterie.

Vedremo quali saranno le future applicazione di questa scoperta, intanto i ricercatori affermano che la soluzione è già pronta per le realizzazione di alcuni dispositivi bio-medicali, come pacemaker cardiaci.

PUOI LEGGERE ANCHE:

UNA SUPER BATTERIA DALLE NANOTECNOLOGIE

 Energia, Innovazioni  Commenti disabilitati su UNA SUPER BATTERIA DALLE NANOTECNOLOGIE
Nov 272016
 

Abbiamo parlato molte volte di nuove tecnologie per la realizzazione di batterie per prodotti indossabili e per gli smartphone. Le batterie rappresentano oggi proprio per questi ultimi il vero tallone di Achille. I moderni cellulari, infatti svolgono una quantità enorme di funzioni e vengono usati in modo continuativo dai loro proprietari. Questo purtroppo si traduce in un consumo della batteria molto rapido che richiede continue ricariche anche giornaliere.

SBATTERY01

Le nueve batterie cercano di far fronte a questi limiti e anche i produttori ottimizzando i software e l’hardware cercano di limitare i danni, ma la realtà è che bisogna ricaricare il proprio cellulare almeno una volta al giorno e serve del tempo affinché questa non raggiunga un livello accettabile. Inoltre, le batterie sono soggette a un lento ma progressivo decadimento dovuto all’uso; cioè man mano che le si utilizza, la durata diminuisce e i tempi di ricarica crescono.

Dagli studi condotti sulle nanotecnologie all’Università della Florida Centrale dal ricercatore Yeonwoong ‘Eric’ Jung forse si apre uno spiraglio per una soluzione definitiva.

Si tratta di un sistema che utilizza super condensatori flessibili che rispetto alle normali batterie utilizzate oggi, riescono a mantenere la propria stabilità per almeno 30.000 cicli di ricarica, ossia molto di più delle attuali. La loro struttura, inoltre, consente di immagazzinare l’energia molto più rapidamente di quelle al litio potendo così ridurre drasticamente i tempi di ricarica da qualche ora a pochi secondi.

SBATTERY02

In pratica, questi condensatori sono composti da milioni di microscopici filamenti rivestiti da materiali bidimensionali capaci di far fluire gli elettroni molto più velocemente così da avere tempi di ricarica inferiori e sono rivestiti da nanomateriali capaci di fornire una superiore densità che consente un maggior accumulo di energia e potenza.

Si tratta è vero di un progetto ancora in fase sperimentale, ma i risultati fin qui ottenuti fanno ben sperare che si sia imboccata finalmente la giusta strada per realizzare la batteria definitiva, sia per gli indossabili che per le auto elettriche. Staremo a vedere.

PUOI LEGGERE ANCHE:
SCARICA L’ARTICOLO:

ENERGIA DA UN BATTITO D’ALI DI CICALA

 Energia  Commenti disabilitati su ENERGIA DA UN BATTITO D’ALI DI CICALA
Ott 142016
 

L’ottimizzazione delle tecnologie energetiche già in uso procedono di pari passo con la ricerca di nuove e efficaci soluzioni con lo scopo di massimizzare la “trasformazione” di forme di energia in elettricità (vedi Le Fonti e le Forme di Energia).

Cicala01

Le soluzioni provengono da ricerche condotte da molti laboratori internazionali nelle direzioni più disparate. L’ultima arriva dalla Cina, dall’Università di Shanghai Jiao Tong dove un gruppo di ricercatori ha studiato la particolare composizione delle ali delle cicale. Queste sono composte da una serie infinita di microscopici coni con punta verso l’esterno.

I ricercatori hanno visto nell’inconsueta composizione di queste ali, la soluzione in grado di migliorare sensibilmente l’efficienza dell’energia solare riducendo sprechi e massimizzando l’efficienza.

Cicala02

Riproducendo la struttura di queste ali attraverso l’uso di altri materiali semiconduttori, tipo il biossido di titanio, i ricercatori sono riusciti a creare una superficie in grado di abbattere quasi totalmente il riflesso della luce. Pensate al vantaggio che è possibile ottenere con una superficie del genere se applicata alle celle fotovoltaiche; questi pannelli, che trasformano la luce solare direttamente in elettricità continua quando colpiti dai fotoni provenienti dal Sole, possono incrementare la loro efficienza in maniera esponenziale perché la luce rimane intrappolata interamente sulla sua superficie senza dispersione e senza ritorno nell’atmosfera.

Cicala03In pratica i microscopici coni realizzati sul semi-conduttore, creano dei percorsi obbligati che la luce è costretta a percorrere in infinite riflessioni penetrando sempre più in profondità e non riuscendo più a riemergere a causa di queste e della dispersione. Le frequenze comprese tra i 450 e i 750 nanometri restano così intrappolate permettendo al pannello di assorbire la massima quantità di energia.

I pannelli possono, inoltre, essere esposti a temperature fino a 500 °C e restare efficientissimi anche in condizioni climatiche estreme conservando la loro incredibile qualità.

Lo studio, pubblicato sulla rivista internazionale “Applied Physics Letters”, descrive dettagliatamente il progetto e ne fa comprendere la portata.

Da un impercettibile battito d’ali una grande fonte di energia.

PUOI LEGGERE ANCHE:
SCARICA L’ARTICOLO:

Io studio: GAS METANO

 Energia, Didattica  Commenti disabilitati su Io studio: GAS METANO
Ott 082016
 
BES-DSA_icon MAPPA CONCETTUALEFreccia destra
Mappa2_icon
ARGOMENTO INDICATO PER BES/DSAFreccia sinitra2

MolecolaIl METANO è un combustibile fossile e può essere considerato una fonte di energia primaria. E’ un idrocarburo risultato della lenta decomposizione di sostanze organiche in assenza di ossigeno nel sottosuolo. Si presenta sotto forma di gas ed ha una molecola molto semplice formata da 1 atomo di carbonio e 4 atomi di idrogeno; formula chimica CH4. E’ più leggero dell’aria e risulta essere inodore, incolore e insapore. Proprio grazie a questa semplicità molecolare, il metano brucia completamente senza rilasciare sostanze nell’atmosfera e quindi tra gli idrocarburi è quello meno inquinante. E’ considerata una fonte esauribile perché il suo processo di formazione in natura richiede milioni di anni.

Approfondisco: gli idro-carburi  sono composti organici formati esclusivamente da molecole di idrogeno (idro) e carbonio (carburi).

PASSAGGI DI STATO DELL’ENERGIA
Ampolla-icon Arrow Fiamma Arrow spur-gear-icon Arrow Apps-preferences-system-power-management-icon
CHIMICA TERMICA MECCANICA ELETTRICA
FORMAZIONE

Il metano, si trova nel sottosuolo quasi sempre in giacimenti petroliferi, in quantità pari al petrolio o può trovarsi in giacimenti di solo metano intrappolato sotto le rocce magazzino impermeabili.

Schema giacimento gas

La sua localizzazione nelle profondità marine o nel sottosuolo è dovuta allo sprofondamento in ere geologiche molto lontane di sedimento organico (normalmente plancton marino) lentamente ricoperto da detriti, sabbia e strati di terreno. L’azione combinata della pressione e del calore della Terra, in assenza di ossigeno ha fatto si che questi resti organici abbiano pian piano perso ossigeno trasformandosi, nelle porosità delle rocce sedimentarie, in idro-carburi.

RICERCA E TRASPORTO

Anche la ricerca dei pozzi di metano avviene con le stesse tecniche utilizzate per la ricerca del petrolio, ossia studi geologici del suolo, trivellazioni ispettive e carotaggi, sistemi sismografici.

Quando si trova in enormi giacimenti insieme al petrolio, sotto fortissima pressione, nel momento in cui la trivella lo raggiunge, questo fuoriesce con grande violenza. In alcuni casi, il metano non viene utilizzato nelle centrali per la produzione di elettricità, ma viene ripompato nel pozzo di estrazione per favorire, grazie alla pressione che genera, la fuoriuscita di ulteriore petrolio.

Il trasporto del gas alle raffinerie o alle centrali elettriche avviene attraverso speciali condutture chiamate metanodotti o gasdotti, che attraversano infiniti territori dal pozzo fino alla raffineria, o attraverso speciali navi metaniere dotate di doppio scafo e comparti separati per lo stoccaggio del gas.

Gasdotti01

Gasdotto in superficie

Gasdotti2

Gasdotto subacqueo

I metanodotti, possono essere in trincea, ossia invisibili perché nascosti sottoterra oppure in superficie, sospesi a circa un metro di altezza sul terreno e sono costituiti da grandi tubature metalliche. Per consentire al gas di raggiungere la destinazione, il metanodotto necessita di centrali di pompaggio ogni 200 chilometri circa per comprimerlo e spingerlo a percorrere altri chilometri all’interno di queste tubature.

Metaniera

Nave metaniera

IL METANO E L’ITALIA

In Italia la prima trivellazione ad opera dell’Ente Nazionale Idrocarburi (ENI) è datata 1959 nei pressi di Lodi. Successivamente altre perforazioni sono state realizzate a Crotone e nell’Adriatico a largo di Ravenna. Attualmente il metano estratto in Italia rappresenta circa il 15% del consumo di questo combustibile.

La restante parte, viene importata dall’estero tra cui una fetta consistente ci arriva tramite il Trans Mediterranean Pipeline o Transmed, gigantesco gasdotto che partendo da Hassi R’Mel, nel deserto algerino, attraversa la Tunisia per poi inabissarsi nel Mar Mediterraneo e riemergere in Sicilia nei pressi di Mazara del Vallo. Da qui risale lungo tutto lo stivale fino a Minerbio dove viene stoccato in una delle più grandi centrali europee. In tutto un percorso di circa 2.200 chilometri di cui 380 sommersi sotto il Canale di Sicilia. La parte italiana è di proprietà di SNAM Rete Gas.

Transmed

In viola il tracciato del TransMed italiano

CENTRALE A TURBO-GAS

Una centrale elettrica a turbogas serve a generare energia elettrica bruciando metano all’interno di un motore a combustione interna turbo-espansore. Un compressore inietta nella camera di combustione ossigeno preso dall’esterno in modo che al suo interno avvenga la combustione del gas generando energia termica ad alta temperatura. Il calore spinge le pale della turbina a vapore in modo che l’energia termica venga trasformata in energia meccanica. L’asse della turbina è collegato ad un generatore elettrico, l’alternatore.

CENTRALE TURBOGAS

METANO PRO E CONTRO

Il metano come detto è tra i combustibili fossili il più green perché non rilascia sostanze inquinanti nell’atmosfera per cui il suo uso si è pian piano sempre più diffuso.

Il processo di estrazione, come quello del petrolio, è ugualmente inquinante e soprattutto il metano è responsabile per il 18% dell’effetto serra mondiale perché da quando si è iniziato a farne largo uso la sua concentrazione è aumentata del 150% nell’atmosfera contribuendo all’aumento delle temperature.

GUARDA I VIDEO:
Immagine anteprima YouTube
PUOI LEGGERE ANCHE:
  1. Io studio: ENERGIA IDROELETTRICA
  2. Io studio: ENERGIA EOLICA
  3. Io studio: ENERGIA DAGLI OCEANI
SCARICA L’ARTICOLO:

FUNGHI PER RICICLARE METALLI

 Innovazioni  Commenti disabilitati su FUNGHI PER RICICLARE METALLI
Set 202016
 

L’uso di terminali mobili, quali smartphone e tablet ha richiesto e sempre più richiederà l’uso di batterie di lunga durata e soprattutto ricaricabili. Molti sono gli studi in tal senso per riuscire a trovare la batteria perfetta per questi terminali e di molti ho scritto anche su queste pagine.

Funghi03

In questo caso, l’idea è nata da uno studente della University of South Florida il quale è riuscito per la prima volta a estrarre alcuni tipi di metalli dai residui di batterie esauste.

Sulla base di questo esperimento, un team di ricercatori guidato da Jeffrey A. Cunningham, ha combinato insieme tre diversi funghi, il Penicillium simplicissimum, l’Aspergillus niger e il Penicillium chrysogenum, che hanno permesso loro di estrarre i metalli sopra citati.

Funghi01

Questo processo consentirebbe alle case produttrici enormi risparmi, dato che è già possibile estrarre questi metalli dalle batterie esaurite ma a costo di impiegare sostanze acide e corrosive e costosi processi termici ad alte temperature.

In pratica la procedura è semplice; le batterie esauste vengono raccolte e i catodi (poli positivi) vengono polverizzati. Queste polveri vengono sottoposte all’azione combinata dei tre funghi che consentono, sviluppando acidi organici di estrarre i metalli.

Funghi02

Il vantaggio è quello di essere totalmente “green”, consentendo un recupero importante dei metalli senza processi inquinanti.

I risultati sono molto incoraggianti, infatti con i funghi si estraggono il 48% del cobalto e l’85% del litio, ma il team mira ad ottenere la migliore combinazione possibile sia per quanto riguarda la percentuale di recupero dei metalli che per quanto riguarda l’aspetto ecologico.

PUOI LEGGERE ANCHE:
SCARICA L’ARTICOLO:

RESPIRARE SOTT’ACQUA: FORSE SI PUO’

 Materiali, Innovazioni  Commenti disabilitati su RESPIRARE SOTT’ACQUA: FORSE SI PUO’
Giu 142016
 

Cobalto01Respirare per ore sott’acqua? Forse sarà presto possibile. Infatti, i ricercatori della University of South Denmark hanno realizzato uno speciale cristallo ottenuto con sali di cobalto capace di assorbire ossigeno dall’aria e dall’acqua. Ma la caratteristica straordinaria di questo cristallo è la sua capacità di assorbirne una quantità molto elevata, fino a 160 volte quella che respiriamo. E le sorprese non sono finite qui: infatti, questo cristallo in particolari condizioni, ossia in presenza di calore, o in luoghi in cui la concentrazione di tale gas è particolarmente bassa, è in grado di rilasciare l’ossigeno assorbito. A seconda dei parametri in cui si trova il cristallo, ossia temperatura, pressione e contenuto, l’assorbimento dell’ossigeno può avvenire o istantaneamente o in un paio di giorni.

Cobalto04

Cristallo di cobalto: a sinistra rosso con bassa concentrazione di ossigeno, a destra nero con alta concentrazione

Cobalto05

Struttura cristallina: palle blu = cobalto, azzurre piccole = azoto, rosse = ossigeno

Gli scenari che questo nuovo materiale apre sono incredibili.

La stessa ricercatrice Christine McKenzie, ne suggerisce alcuni che potrebbero rappresentare una soluzione in alcune circostanze. Ad esempio questo materiale potrebbe consentire di realizzare nuovi dispositivi per la respirazione subacquea di dimensioni ridottissime e quasi senza peso. Pochissimi granelli, infatti, potrebbero contenere tutto l’ossigeno necessario alla respirazione anche per lunghi periodi e ricaricarsi autonomamente traendo l’ossigeno direttamente dall’acqua o dall’aria circostante.

Cobalto02

In campo energetico, questi sali potrebbero rifornire di ossigeno le celle combustibili delle batterie consentendone di ridurne il volume e il peso.

Oppure potrebbero aumentare l’autonomia dei respiratori utilizzati dai pazienti con problemi di ventilazione.

Siamo ancora alla fase di sperimentazione e lontani dai risultati auspicati dal team di ricercatori, ma questo cristallo apre nuove frontiere e fa ben sperare per il prossimo futuro.

PUOI LEGGERE ANCHE:
SCARICA L’ARTICOLO:

UN MOTORE DA UN ATOMO

 Innovazioni  Commenti disabilitati su UN MOTORE DA UN ATOMO
Mag 042016
 

Motori che non consumano nulla? Motori che funzionano in eterno? Ancora non ci siamo, anche se la tecnologia sta compiendo enormi passi avanti in questa direzione.

Atomico02

Johannes Roßnagel

Un team di ricercatori tedeschi guidato da Johannes Roßnagel, ha messo a punto un motore termico in grado di funzionare alimentato da un solo atomo. Risultato? Dal punto di vista dell’efficienza energetica, nullo, ma dal punto di vista delle prospettive per il futuro, apre la strada a incredibili scenari.

Immaginate di quanto si potrebbe ridurre le dimensioni di un motore riuscendo a produrre energia in un campo così miniaturizzato. Si potrebbe realizzare quanto già accaduto nel campo dell’elettronica con la miniaturizzazione dei micro processori dei computer.

Il team ha isolato un atomo di calcio e lo ha costretto a muoversi lungo una sola direzione. Ha poi applicato due differenti tecnologie per cambiare il suo stato termico. Un laser per raffreddarlo e un campo elettrico oscillante per riscaldarlo. Il risultato è stato quello di produrre un movimento avanti e indietro come quello di un pistone all’interno di un cilindro nel motore a scoppio di un’auto.

Atomico01

E’ stato in questo modo prodotto il primo motore termico della storia alimentato con un solo atomo. E’ un passo enorme nello studio delle nanotecnologie applicate al controllo e modificazione della materia a livello atomico.

L’efficienza energetica raggiunta è infinitesimale, pari allo 0,28% se confrontata a quella di un normale motore a scoppio, pari al 25-30%, in cui quindi un terzo dell’energia sviluppata dalla combustione del carburante diventa energia utile. Ma il vero successo, non è nella quantità di energia trasformata, ma nella capacità di ridurre a livelli atomici la costruzione di macchine e motori.

E’ evidente che non vedremo nel breve periodo macchine alimentate da questo tipo di motore perché le condizioni per farlo funzionare, ossia laser, aree a vuoto, specifici componenti elettronici, sono appannaggio per ora solo di grossi centri di ricerca e sviluppo e evidentemente molto costosi. Ma come dicevo, gli scenari aperti sono a dir poco fantascientifici. Si parla infatti di macchine nanoassemblatrici, ossia capaci di costruire qualsiasi cosa a partire dagli atomi circostanti.

PUOI LEGGERE ANCHE:
SCARICA L’ARTICOLO:

LE BIOMASSE

 Energia  Commenti disabilitati su LE BIOMASSE
Apr 142016
 
Articolo scritto dalle alunne: Marta Gueli, Germana Fonti, Elisena Vitaliano e Teresa Giuffrida
Classe: 3H – Anno: 2015-16

Prefazione a cura del prof. Betto

Dopo diverso tempo riprendo a pubblicare lavori e approfondimenti realizzati dai miei alunni. Sono lavori interessanti, curati graficamente e comunque espressione delle loro capacità e della loro passione. Supervisionati dal sottoscritto durante le fasi di lavorazione, evidenziano doti narrative e capacità interpretative non indifferenti, raggiungendo traguardi a volte sorprendenti. Vi presento oggi un lavoro sintetico ma accurato, espressione di un grande lavoro di equipe. Buona lettura.


Per biomassa si intende ogni sostanza organica che deriva direttamente o indirettamente dalla fotosintesi clorofilliana. La maggior parte delle biomasse è di origine vegetale; solo circa il 10% è di origine animale. La biomassa vegetale viene prodotta utilizzando l’energia solare per mezzo, come detto, della fotosintesi clorofilliana e si presenta in più forme: in foreste, boschi, colture o dalla componente organica che proviene dalla raccolta differenziata urbana.

Biomassa01

STORIA

Il fuoco, è stata indiscutibilmente la più importante invenzione nella storia dell’uomo ed è stato scoperto grazie alla combustione accidentale del legno. L’invenzione della macchina a vapore, ci ha consentito, poi, di ottenere energia meccanica dalla sua combustione. Solo di recente le prospettive d’esaurimento dei carburanti fossili e l’inquinamento prodotto dalla loro combustione, hanno spinto l’uomo a “riscoprire” l’utilità del legno e dei rifiuti organici (biomassa) come fonti energetiche.

Biomassa05

CLASSIFICAZIONE

Le biomasse possono essere classificate in base a 3 diversi criteri:

  • il contenuto di acqua (biomassa fresca o secca);
  • l’origine (vegetale o animale);
  • la vitalità (presenza di organismi morti o vivi al suo interno).

Oppure a seconda della loro origine si possono distinguere in:

  • Fitomassa: la biomassa proviene da piante;
  • Zoomassa: la biomassa proviene da animali;
  • Biomassa microbica: la biomassa proveniente da microrganismi.

Si possono distinguere anche in:

  • Materiale vegetale da coltivazioni dedicate, biomassa da miscanto, biomassa da sorgo;
  • Materiale vegetale da coltivazioni non dedicate e da prodotti agricoli: vinacce (residuo dalla lavorazione dell’uva), lolla di riso (sottoprodotto derivante dalla lavorazione dei cereali), nocciolino (prodotto ottenuto dalla lavorazione meccanica delle olive );
  • Produzione direttamente da bosco: Interventi selvicolturali, manutenzione forestale, potatura;
  • Sansa di oliva dislocata o biomassa liquida: olio di palma, olio di colza.
COMPOSIZIONE

BIOMASSA_Scroll

La biomassa è formata principalmente da organismi vivi o morti, che a loro volta sono costituiti da una varietà di composti diversi. I composti quantitativamente più importanti dal punto di vista energetico possono essere raggruppati in tre classi:

  • Carboidrati: rappresentano la maggior parte della biomassa e sono costituiti da carbonio, ossigeno e idrogeno. Essi possono essere monosaccaridi come il glucosio e il fruttosio, disaccaridi come il saccarosio, o polisaccaridi quali l’amido e la cellulosa;
  • Grassi;
  • Proteine.
UTILIZZO

Gli impieghi finali delle biomasse sono orientati verso la produzione di energia termica, (acqua calda, riscaldamento, utenze industriali), energia elettrica e biocarburanti.
Alcuni di questi impieghi utilizzano direttamente la biomassa allo stato naturale, senza modifiche alla sua struttura originaria, altri invece, richiedono dei “processi di trasformazione complessi” della biomassa per consentire una maggiore versatilità del suo utilizzo energetico rivolto in particolare (ma non solo) ad alcune applicazioni tecnologiche di tipo “convenzionale” (stufe, caldaie ecc).

CENTRALI DI CONVERSIONE

biomassa02

Le taglie delle centrali possono variare dalle medie centrali termoelettriche alimentate da biomasse solide, solitamente da cippato di legno, sino ai piccoli gruppi elettrogeni alimentati da biocombustibili liquidi. Le tipologie impiantistiche più diffuse sono le seguenti: impianti tradizionali con forno di combustione della biomassa solida, caldaia che alimenta una turbina a vapore accoppiata ad un generatore;  impianti con turbina a gas alimentata dal syngas ottenuto dalla gassificazione di biomasse;  impianti a ciclo combinato con turbina a vapore e turbina a gas; impianti termoelettrici ibridi, che utilizzano biomasse e fonti convenzionali;  impianti, alimentati da biomasse liquide, costituiti da motori accoppiati a generatori.

GUARDA I VIDEO:

Immagine anteprima YouTube

PUOI LEGGERE ANCHE:
SCARICA L’ARTICOLO:

ENERGIA DAL SOLE E DALLA PIOGGIA

 Innovazioni  Commenti disabilitati su ENERGIA DAL SOLE E DALLA PIOGGIA
Apr 122016
 

Ancora lui, il grafene, il materiale dei miracoli ricavato dalla grafite capace con la sua incredibile struttura di realizzare cambiamenti epocali in ogni campo. Lo studio e la sua applicazione questa volta arrivano dalla Cina ed esattamente dalla Ocean University of China.

FOTOGRAFENE03

In pratica, gli scienziati hanno applicato uno strato pari allo spessore di un atomo sulla superficie di pannelli fotovoltaici riuscendo in questo modo a produrre energia anche quando la superficie è ricoperta da gocce di pioggia.

FOTOGRAFENE02

Il grafene posto sulla superficie del vetro del pannello, riesce a scindere i vari sali contenuti nelle gocce d’acqua, sodio, calcio, ammonio, carichi positivamente riuscendo così a creare una differenza di potenziale sulla sua superficie che genera elettricità anche quando il pannello è ricoperto dalla pioggia.

Lo strato di grafene fa da filtro consentendo la scissione dei sali e il pannello, almeno in fase di prototipo è riuscito a produrre elettricità. Ancora si tratta di poca cosa, ma gli studi fanno sperare bene e l’obiettivo è quello di produrre energia elettrica direttamente dalla luce del sole  e in alternativa dalle gocce d’acqua che nelle giornate piovose ricoprono la sua superficie.

PUOI LEGGERE ANCHE:
SCARICA L’ARTICOLO:

LE NUOVE “AREE TEMATICHE”

 ET NEWS  Commenti disabilitati su LE NUOVE “AREE TEMATICHE”
Mar 312016
 

Aree_tematiche baseIl lavoro di aggiornamento e semplificazione del nostro sito è quasi completato. Parte oggi sito anche la nuova sezione AREE TEMATICHE.

Si tratta di una grande sezione che raccoglie al suo interno tutti gli articoli, le news e le informazioni relative a diverse aree di interesse di cui ci siamo sempre occupati e delle quali esistono anche delle omologhe pubblicazioni sulla rivista FlipBoard. Sto parlando di Costruzioni, Materiali, Energia, Trasporti.

Nuove icone sia sul widget che nelle pagine, rimandano a specifiche raccolte di articoli di approfondimento o ambiti di studio su quel settore di interesse. Curiosità, rumors dalla rete, progetti, manifestazioni, eventi e quant’altro legato agli argomenti di maggior interesse nella Tecnologia. Ma diamo insieme uno sguardo a questi settori di interesse:

Edifici3 COSTRUZIONI
Il mondo dell’edilizia, dell’ingegneria e delle grandi opere, ma con un occhio anche al design e alla sostenibilità delle opere realizzate o da realizzare. Uno spaccato sul mondo dell’ingegneria estrema e delle mega costruzioni attraverso una ricerca e una selezione a cura del sottoscritto.
MATERIALI Materiali
Materiali antichi e moderni, soluzioni consuete e innovative tecniche di lavorazione. Analizziamo i nuovi traguardi delle scienze e della ricerca, per scoprire come si creano nuovi materiali o come si possono trasformare, migliorandoli, i prodotti utilizzati di consuetudine nell’industria.
Airbus A380 TRASPORTI
Aerei, treni super-veloci, auto che si guidano da sole, droni e avveniristici mezzi che sfidano le leggi della fisica. Un occhio attento ai saloni e alle manifestazioni internazionali dove prototipi e mezzi innovativi vengono presentati al grande pubblico. Un occhio attento e curioso alle piccole e grandi scoperte che modificheranno profondamente i trasporti come oggi li conosciamo.
ENERGIA electricity
Fonti e forme di energia. Soluzioni tradizionali e innovazioni fantascientifiche. Progetti e speranze alla ricerca della soluzione definitiva ai problemi energetici del mondo moderno con uno sguardo attento ai problemi ambientali e alla eco-compatibilità delle nuove fonti di energia.

Tutto questo lo potrete leggere su queste pagine o sulle nostre riviste FLIPBOARD e da oggi anche sul nuovo sito ilTECHNOlogico.it a cura del sottoscritto e dalla casa Editrice Lattes Editori di Torino.

LE ALTRE AREE TEMATICHE

HERO, LA SCARPA CHE RICARICA IL CELLULARE

 Innovazioni  Commenti disabilitati su HERO, LA SCARPA CHE RICARICA IL CELLULARE
Mar 092016
 

Scarpe1

Vibram, nota azienda italiana specializzata nella realizzazione di scarpe e suole smart, in partnership con InStep Nano Power e in collaborazione con l’Istituto Italiano di Tecnologia e il Centro per MicroBioRobotica di Pontedera hanno sviluppato un prototipo di scarpa capace di produrre energia.

Il progetto prende il nome di Hero acronimo di Harvesting of Energy in Rubber Outsole e altro non è che un sistema integrato nella suola di una scarpa capace di convertire forme di energia.

La tecnologia inserita nella scarpa, infatti, è in grado di convertire l’energia cinetica del movimento in energia elettrica sufficiente a ricaricare dispositivi mobili. La scarpa è in grado di generare fino a 3Watt di potenza in caso di corsa, ma durante la classica camminata sviluppa costantemente circa 1 Watt di potenza e quindi circa 8 Watt/ore per una camminata di 8 ore. Questa energia, è sufficiente a ricaricare o comunque non far scaricare la maggior parte dei nostri dispositivi mobili, smartphone e tablet.

Scarpe2

La scarpa è dotata di una porta micro USB per il collegamento dei dispositivi da ricaricare, una connessione bluetooth per trasmettere all’App sul terminale il numero di passi e l’energia accumulata oltre che la posizione GPS di chi le indossa.

Tutto questo sistema è ben sigillato nell’intersuola della scarpa per evitare contatti con l’acqua, polvere, sabbia o ogni altro elemento potenzialmente dannoso per i dispositivi.

Hero è ancora un prototipo, ma i risultati sono incoraggianti e si spera che presto questa sistema possa essere integrato nelle scarpe outdoor della Vibram e rese disponibili a ciascuno di noi.

PUOI LEGGERE ANCHE:
SCARICA L’ARTICOLO:

BATTERIE DALLE MELE MARCE

 Innovazioni  Commenti disabilitati su BATTERIE DALLE MELE MARCE
Mar 082016
 

Si moltiplicano gli studi nel tentativo di realizzare la batteria del futuro, eco-sostenibile, capiente e duratura. Dopo le varie soluzioni già presentate sulle nostre pagine, mi sono imbattuto in una nuova soluzione questa volta ad opera dei ricercatori del Karlsruhe Institute of Technology in Germania.

BatteriaMele02

Dalle mele in decomposizione, i ricercatori sono riusciti a realizzare prototipi di batterie agli ioni di sodio, disidratandole e utilizzando il 95% del carbonio prodotto dalla decomposizione delle materie organiche in esse contenute, realizzando un elettrodo ad alte prestazioni.

BatteriaMele01L’elettrodo così realizzato ha una capacità di 230 mAh/g e una curva di degradazione molto limitata; infatti anche dopo oltre 1000 cicli di caricamento e scaricamento il degrado è risultato molto limitato. Un aspetto negativo sta nel peso che la batteria definitiva avrebbe. Infatti il sodio ha un peso tre volte superiore a quello del litio, per cui queste batterie andrebbero utilizzate per applicazioni che non sono vincolate da necessità di leggerezza, tipo le batterie per automobili.

I ricercatori tedeschi ritengono che l’ideale potrebbe essere quello di sfruttare queste batterie in abbinamento a meccanismi di accumulo di energia chiamati grid storage. La combinazione delle due tecnologie potrebbe rendere vantaggiosi questi generatori proprio per autoveicoli o dispositivi elettronici di una certa dimensione.

Il costo di queste materie prime, inoltre, è pari allo zero, potendo utilizzare mele di scarto o con aspetto non proprio ideale, che normalmente vengono eliminate già nella catena di produzione e non utilizzate neppure per produrre concimi. In più tali elementi sono eco-sostenibili perché totalmente bio-degradabili.

PUOI LEGGERE ANCHE:
SCARICA L’ARTICOLO:

IL SOLARE IN MAROCCO E’ RECORD

 Energia  Commenti disabilitati su IL SOLARE IN MAROCCO E’ RECORD
Feb 252016
 

SolareMarocco2

Il sole non manca mai, lo spazio neanche e in questo caso pure la volontà politica ha fatto la sua parte. Sto parlando del Marocco, una delle terre più a ovest del continente africano, affacciato sull’Oceano Atlantico e caratterizzato da un territorio vario e un clima che passa da mediterraneo a desertico.

E’ proprio in una ampia zona desertica vicino alla città di Ouarzazate che è appena stato inaugurato il più grande impanto solare termico del mondo.

L’obiettivo dichiarato dal governo del Marocco, è quello di raggiungere entro il 2020 il 42% dell’energia nazionale da fonti alternative riducendo drasticamente la dipendenza del paese dai combustibili fossili e dagli altri paesi. Inoltre, l’obiettivo che il Marocco si pone è ancora più ambizioso, cioè raggiungere un abbattimento delle fonti inquinanti del 32% entro il 2030.

470880973EM048_Massive_Sola

L’impianto che sorge in una immensa vallata dello sterminato deserto sahariano utilizzerà differenti tecnologie per produrre energia; un sistema a specchi parabolici da 300 megawatt, un sistema a concentrazione solare da 160 megawatt e una seria di collettori parabolici a cilindro da 150 megawatt.

Il sistema, accumula il calore solare durante la giornata, quando il sole, sempre presente a queste latitudini, infuoca l’arida zona desertica. Durante la notte questo calore accumulato, viene convertito in energia attraverso l’uso di turbine a vapore. Si calcola che l’impianto produca energia per circa 20 ore al giorno e rappresenta solo l’inizio di un immenso progetto energetico che mira a rendere il Marocco totalmente indipendente energeticamente.

SolareMarocco3

Il mega impianto è stato realizzato della compagnia saudita ACWA Power, specializzata nella costruzione di impianti del genere.

GUARDA I VIDEO:
Immagine anteprima YouTube Immagine anteprima YouTube
PUOI LEGGERE ANCHE:
SCARICA L’ARTICOLO:

Io studio: ENERGIA DAGLI OCEANI

 Energia, Didattica  Commenti disabilitati su Io studio: ENERGIA DAGLI OCEANI
Feb 152016
 

IoSTUDIONella ricerca di fonti alternative di energia per sopperire ai limiti dei combustibili fossili, una delle soluzioni con maggiori prospettive di crescita e sviluppo, è lo sfruttamento dell’oceano e delle sue immense masse d’acqua.

Le possibilità che l’oceano offre da questo punto di vista sono molteplici. Infatti, questa immensa mole d’acqua per tutta una serie di motivazioni, è in costante movimento e la possibilità di sfruttarla come fonte energetica risulta possibile in differenti modi, molti dei quali anche economicamente convenienti.

Dagli oceani, attraverso differenti tecnologie è possibile ricavare energia da trasformare sfruttandolo uno dei seguenti fenomeni:

  • correnti;
  • onde;
  • maree;
  • gradienti (osmosi e talassotermica).
ENERGIA DALLE CORRENTI

Le correnti marine, possono essere considerate come degli immensi fiumi che scorrono in mezzo agli oceani a volte per migliaia di chilometri. Possono essere superficiali o profonde e possono generarsi a causa di una serie di fattori naturali. I fattori primari sono la differenza di temperatura dovuta al riscaldamento solare alle varie latitudini e la rotazione terrestre. I fattori secondari sono le differenze di pressione atmosferica, di densità delle acque e le maree.

STUDIA CON I VIDEO:

Immagine anteprima YouTube

A causa di tutti i fattori sopra indicati, in alcune zone del nostro pianeta e soprattutto in presenza degli “stretti”, la velocità di spostamento dell’acqua può essere notevole raggiungendo anche alcuni metri al secondo. L’energia solare assorbita riscalda la superficie del mare, creando una differenza di temperatura fra le acque superficiali, che possono raggiungere i 25°-28°C e quelle situate per esempio a una profondità di 600 m che non superano i 6°-7°C.

Correnti

DALL’ENERGIA CINETICA A QUELLA ELETTRICA

Passaggi-eolico

Le correnti marine si comportano come le correnti aeree e come nelle centrali eoliche, lo spostamento di masse d’acqua (energia cinetica) che impattano contro degli sbarramenti totalmente o parzialmente sommersi, possono generare una grande quantità di energia elettrica. Grandi turbine ad asse verticale (per le correnti costanti) o ad asse orizzontale (per le correnti di marea) sono in corso di studio o sperimentazione in diversi siti mondiali. La più grande centrale di questo tipo si trova in Francia, ma sono in realizzazione grandi centrali anche in Inghilterra, Norvegia e Giappone. In Italia il sito più interessante per lo sfruttamento di questo tipo di energia è lo Stretto di Messina, dove le pale immerse in acqua riescono a generare fino a 15 Mw di potenza.

seaflow

Turbine ad asse verticale

Turbine orizzontali

Turbine ad asse orizzontale

 

 

 

 

 

 

STUDIA CON I VIDEO:
Immagine anteprima YouTube Immagine anteprima YouTube
ASPETTI NEGATIVI DI QUESTI IMPIANTI:

In generale questi impianti non creano particolari problemi. L’assenza di sbarramenti e di infrastrutture impattanti, grazie alla parziale o totale immersione in acqua delle turbine, riducono inoltre al minimo l’impatto ambientale di questi impianti.

ENERGIA DALLE ONDE

Un altro fenomeno sfruttabile per produrre energia dall’oceano, sono le onde che solcano la sua superficie. Le onde si generano a causa del vento che, spirando sulla superficie marina, trasferisce parte della sua Energia Cinetica all’acqua. La quantità di energia sfruttabile dipende, dall’ampiezza delle onde e dal tempo che intercorre tra un’onda e l’altra. Questi parametri dipendono a loro volta dalla velocità del vento e dalla profondità d’acqua sottostante.

DALL’ENERGIA CINETICA A QUELLA ELETTRICA

Passaggi-eolico

Diversi sono i progetti in studio sul pianeta, ma i più promettenti sono:

  • sistemi ad impianti galleggianti;
  • sistemi ad impianti sommersi.
IMPIANTI GALLEGGIANTI

Un progetto di nuova tecnologia che, sfrutta l’energia prodotta dalle onde di superficie degli oceani e permette di produrre elettricità è il Progetto Pelamis, il cui nome deriva da un serpente marino.

Pelamis

Pelamis è un sistema di tubi galleggianti legati tra di loro che, grazie al movimento delle onde genera su dei pistoni idraulici accoppiati a dei generatori, nei punti di snodo tra i tubi, energia meccanica che viene trasformata in energia elettrica. Il primo prototipo è stato installato al centro europeo per l’energia marina delle Isole Orcadi, in Scozia. È stato ufficialmente aperto il 28 settembre 2007. In genere la singola struttura è composta da 5 elementi congiunti, ha un diametro di 3,5m, una lunghezza di 150m capaci di generare  una potenza di 750 kW. I materiali devono essere resistenti all’azione corrosiva dell’acqua di mare e sono previsti accessi alla struttura per eventuali interventi di manutenzione e/o riparazione.

STUDIA CON I VIDEO:
Immagine anteprima YouTube
ASPETTI NEGATIVI DI QUESTI IMPIANTI:

I problemi generati dall’utilizzo di questa tecnologia, sono dovuti all’impatto visivo e all’occupazione di superficie marina, potenzialmente pericolosa per la navigazione. Inoltre, sono ancora presenti problemi legati alla produzione di energia a causa dell’irregolarità del moto ondoso.

IMPIANTI SOMMERSI

Questa seconda tecnologia risolve il problema dell’impatto ambientale perché risulta totalmente sommersa. E’ anche questo un impianto off-shore che sfrutta il principio di Archimede. L’impianto è fissato al fondale marino ed è costituito nella sua parte superiore da un cilindro cavo che si muove in verticale a causa del cambiamento di pressione idrostatica generato dal passaggio delle onde.

Approfondisco: il principio di Archimede dice che “ogni corpo immerso parzialmente o completamente in un fluido, riceve una spinta verticale dal basso verso l’alto, uguale per intensità al peso del volume del fluido spostato».

AWS

L’energia meccanica che ne deriva viene trasformata in energia elettrica grazie ad un generatore. Esiste un impianto del genere installato lungo le costa del Portogallo e produce circa 2 MW di potenza elettrica.

ENERGIA DALLE MAREE

Le maree sono il ritmico alzarsi (flusso) ed abbassarsi (riflusso) del livello del mare provocato dall’azione gravitazionale della Luna e del Sole. Oltre alla forza di gravitazione universale in questo fenomeno entra in gioco anche un’altra forza, quella centrifuga di rotazione della Terra.

Schema dell’influsso del Sole e della Luna sulle maree

DALL’ENERGIA CINETICA A QUELLA ELETTRICA

Passaggi-eolico

Questo tipo di impianto è a tutti gli effetti una centrale idroelettrica con turbina kaplan trovandosi al livello del mare, quindi con piccola caduta e portata molto elevata. Questo tipo di impianto che necessita di sbarramenti e bacini di accumulo, funziona in due fasi distinte:

alta marea, l’apertura delle chiuse permette il riempimento del bacino di accumulo;

bassa marea, il rilascio controllato dell’acqua contenuta nel bacino assicura la produzione di grandi quantitativi di energia anche in questa fase.
Impianti mareomotrici
Le turbine funzionano in entrambe le direzioni, sia con l’acqua in ingresso che con l’acqua in uscita.
STUDIA CON I VIDEO:
Immagine anteprima YouTube
ASPETTI NEGATIVI DI QUESTI IMPIANTI

Gli aspetti negativi delle centrali maremotrici sono dovuti nell’elevato impatto ambientale, dovuti alla necessità di realizzare grandi infrastrutture e per l’erosione delle coste.

ENERGIA DAI GRADIENTI

Altre due tecnologie legate ai fenomeni marini sono in studio in diversi paesi del mondo. Si tratta di sistemi per ottenere energia da fenomeni fisico-chimici che avvengono in natura.

  • gradiente salino (osmosi)
  • gradiente termico (talassotermia)
GRADIENTE SALINO

Approfondisco: l’osmosi è quel fenomeno fisico spontaneo, ossia senza apporto di energia dall’esterno, per cui quando due liquidi a differente concentrazione salina entrano in contatto, quello a maggior concentrazione tende a diluirsi in quello meno concentrato (riduzione della differenza di concentrazione).

Il fenomeno della differenza di concentrazione salina o osmosi, si manifesta maggiormente in quei luoghi ove due liquidi a diversa concentrazione entrano in contatto, ossia dove i fiumi scaricano le loro acque in quelle salate del mare.

osmosi

In una centrale a gradiente salino, una membrana semipermeabile, separa l’acqua dolce da quella salata. A causa dell’alta concentrazione salina dell’acqua di mare, le molecole d’acqua dolce tendono a trasferirsi naturalmente in quella salata in modo da abbassare il suo grado di salinità e avvicinare cosi le concentrazioni saline dei due liquidi (il fenomeno avviene in questa direzione perché i pori della membrana sono attraversabili solo dalle molecole d’acqua più piccole di quelle dei sali che rimangono concentrate in prossimità della membrana). Il movimento dell’acqua attraverso la membrana genera quella che viene chiamata pressione osmotica, che può essere utilizzata in una turbina per produrre energia.

GRADIENTE TERMICO

Il fenomeno della differenza di gradiente termico o talassotermica, sfrutta invece le differenze di temperatura tra la superficie marina (più calda) e quella delle profondità oceaniche.

Un gradiente termico di 20 °C è sufficiente per produrre energia elettrica in maniera economicamente conveniente, utilizzando la tecnologia OTEC (Ocean Thermal Energy Conversion).

Talassotermia

In un sistema del genere, il calore delle acque superficiali, fa evaporare il liquido di lavoro, normalmente ammoniaca, fungendo da sorgente calda. Questo vapore entra in un ciclo turbina a vapore-alternatore che trasforma l’energia termica in elettrica. L’acqua proveniente dalle profondità marine, raffredda il vapore condensandolo nuovamente in acqua chiudendo così il ciclo.

PUOI LEGGERE ANCHE:
SCARICA L’ARTICOLO:

LE BATTERIE CHE NON ESPLODERANNO MAI

 Energia  Commenti disabilitati su LE BATTERIE CHE NON ESPLODERANNO MAI
Feb 082016
 

Batterie esplosive01

Le batterie sono sicuramente il tallone di Achille di tutte le apparecchiature elettriche e soprattutto degli smartphone. Tutti i produttori stanno investendo e cercando soluzioni in grado di garantire ai loro dispositivi una maggiore durata e autonomia, consci che chi raggiungerà per primo l’obiettivo acquisirà prestigio e un’enorme fetta di mercato.

Ma la durata è solo uno dei problemi delle batterie di dispositivi elettronici. Infatti, i componenti chimici con cui sono realizzate, possono causare alcune volte l’esplosione delle stesse con gravi conseguenze sia per il dispositivo che per l’utilizzatore.

I ricercatori dell’Università di Stanford stanno sviluppando in questi giorni una tecnologia che mira proprio a garantire un maggiore sicurezza a protezione degli utenti.

Lo studio è condotto sulle normali batterie agli ioni di litio, quelle utilizzate in tutti i dispositivi, composte da due elettrodi e da un gel elettrolita che trasporta le particelle tra i due poli.

In una normale batteria, una accidentale foratura o un sovraccarico, possono provocare un aumento della temperatura fino a oltre i 150°C e l’elettrolita innescare un’esplosione. I ricercatori di Stanford hanno trovato una soluzione ingegnosa ricorrendo alle nano-tecnologie e al miracoloso grafene. Una pellicola di polietilene elastico, viene rivestita con particelle di grafene e nichel e avvolge tutto il corpo della batteria. La pellicola, collegata con uno degli elettrodi consente il passaggio della corrente solo quando le particelle di nichel e grafene si toccano tra di loro. Ma a causa di un corto circuito o di un sovraccarico, la temperatura aumenta e superati i 70°C il polietilene si espande. Le particelle finiscono per allontanarsi tra di loro e non toccandosi più, spengono di fatto la batteria.

Batterie esplosive02

Non appena questa si raffredda, la pellicola plastica si contrae riportando le particelle di nichel e grafene a contatto, riaccendendo la batteria.

Il valore di espansione della pellicola, può essere modificato i base al tipo di polimero utilizzato e al numero di particelle inserite.

L’ulteriore vantaggio deriva dalla reversibilità del sistema. Infatti, altri sistemi già sviluppati in passato consentivano lo spegnimento della batteria prima del raggiungimento dei 150°C, però rendevano la batteria inutilizzabile. Questo approccio consente invece di continuare ad utilizzare la batteria anche dopo diversi cicli di stop garantendo una lunghissima durata alle stesse.

PUOI LEGGERE ANCHE:
SCARICA L’ARTICOLO:

LI-FI L’EVOLUZIONE DEL WI-FI

 Innovazioni  Commenti disabilitati su LI-FI L’EVOLUZIONE DEL WI-FI
Gen 282016
 
VOTA QUESTO ARTICOLO SU:logo

Li-Fi-technology

Forse la trasmissione dati a distanza sta per cambiare per sempre. Dall’intuizione e scoperta di Harald Haas dell’università di Edimburgo, si sta passando alla sperimentazione sul campo in alcuni uffici a Tallin in Estonia.

Sto parlando del Li-Fi, un nuovo sistema di trasmissioni dati senza fili che dovrebbe sostituire l’ormai obsoleta connessione Wi-fi che tutti utilizziamo a casa e in ufficio.

Si tratta di un sistema che sfrutta la luce visibile nelle frequenze comprese tra 400 e 800 terahertz, e riesce attraverso un codice binario a trasmettere un enorme quantità di dati ad una velocità fino a 100 volte superiore a quella del wi-fi.

Li-Fi-2

Secondo Haas, l’unica cosa da fare per rendere la rete disponibile in ogni luogo, è quella di inserire un microchip in ogni dispositivo di illuminazione presente negli ambienti domestici e non.

I vantaggi secondo quanto dichiarata dallo stesso ideatore sarebbero molteplici. Innanzitutto la mancanza di interferenze al di fuori dello spettro ottico entro il quale avviene lo scambio dei dati, quindi molta sicurezza nella trasmissione dati.

Si realizzerebbe un notevole risparmio energetico in quanto non sarebbe necessario realizzare dispositivi appositi, ma basterebbe utilizzare le normali lampadine di cui tutti gli ambienti sono dotati.

Si potrebbe diffondere l’uso di questa tecnologia in quegli ambienti in cui è vietata per problemi di interferenze come ad esempio gli ospedali e soprattutto gli aerei, con il vantaggio, inoltre, di poter utilizzare la tecnologia di trasmissione ovunque senza particolari problemi di adattamento o predisposizione utilizzando semplicemente la luce e non le costose e limitate onde radio.

Le promesse sono enormi. Basti pensare che ogni lampadina può diventare un hot-spot di trasmissione e ricezione dati. L’impulso elettrico, trasformato in impulso luminoso viaggerebbe attraverso frequenze non visibili all’occhio umano (infrarossi) raggiungendo gli ipotetici 224 gigsbits al secondo di velocità, inimmaginabili con le normali reti wi-fi.

GUARDA I VIDEO:

Immagine anteprima YouTube

PUOI LEGGERE ANCHE:
SCARICA L’ARTICOLO:

UNO SCHERMO A ZERO ENERGIA

 Innovazioni  Commenti disabilitati su UNO SCHERMO A ZERO ENERGIA
Gen 162016
 
VOTA QUESTO ARTICOLO SU:logo

SCHERMO01

Si susseguono tutti i giorni notizie in merito a batterie e sistemi in grado di ricaricare molto rapidamente e di mantenere la carica per tempi molto prolungati rispetto alle 24 ore massimo cui siamo abituati oggi con i nostri smartphone.

La notizia giunge dal giornale inglese Telegraph e riporta i risultati di una ricerca condotta all’Università di Oxford. I ricercatori, hanno evidenziato come la maggior parte dell’energia assorbita da un cellulare dipende dallo schermo (circa il 90%). I produttori stanno cercando delle soluzioni attraverso artifici software che mettono in standby parti hardware del telefono, per allungare al massimo la durata delle batterie, ma tutto questo non riesce comunque a far superare a queste ultima una durata giornaliera.

La società di informatica Bodle Technologies, sta infatti sviluppando il progetto di uno schermo capace di ridurre drasticamente i propri consumi anche in piena operatività.

Il dottor Peiman Hosseini, amministratore della società, ritiene che con questa scoperta, si possa creare un nuovo mercato e aprire prospettive incredibili all’innovazione.

SCHERMO02

Utilizzando una tecnologia laser già sperimentata e utilizzata nella creazione di DVD riscrivibili, Hosseini ha sviluppato degli schermi molto luminosi, che non richiedono energia per mostrare le immagini, dai colori molto vivaci e estremamente visibili anche alla luce del sole.

L’applicazione di questo tipo di tecnologia trova la sua naturale applicazione proprio negli strumenti che più utilizziamo quotidianamente, i nostri smartphone, realizzando in questo modo una enormemente estensione nella durata della batteria.

PUOI LEGGERE ANCHE:
SCARICA L’ARTICOLO: